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This note is mainly to record the content of this semester’s class in Analysis II. The
first half is based on Pugh’s book [2] and some from Apostol’s book [[I], and the second
half is based on Mr. Shen’s lecture notes. We will not cover the content taught in the last

semester.
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1 The L? Space and the Orthogonal Basis

In this subsection, we will study the space L2[a, b]. The space is defined as the following
12[a,b] = {f :[a,b] = R | f is measurable and f|f|2 < oo}.
Recall in the last semester, we have define the concept of a normed space.

Definition 1 (normed space). A normed space is a vector space X with norm |||, satisfying
these three properties:

1. ||x|| > 0 for all x € X , and ||x|| = 0 if and only if x = 0.
2. ||lax|| = |a| - ||x]| for all « € R and x € X.

3. |Jx + | < lIxll + |[y|| for all x,y € X.

Now consider the norm on L?[a, b] defined by

= ([1P)

It is easy to see that ||af|| = |af - ||f|| Also note that ||f|| = 0 if and only if f = 0 almost
everywhere. To see the third condition, we consider the Cauchy-Schwartz inequality:

I ERCEINGEI

The inequality on the left is trivial. For the inequality on the right side, we might assume
that f,g > 0. Then for all t € R we have

1/2

(tf +9)% >0 = 2f2+2fg+¢*>0

= tsz2+22tffg+fg220
= <[ 7))
= [re=([A)" ([

lr+sl’ = [lr+sl = [r2+2 [ fs+ [&
< [rea([A)([#)+ [&=a+ b

This gives the third condition of the norm. We conclude that [.%[a, b] is a normed space. In
fact, it is a Banach space.

Hence,

Theorem 2. [[a, b] equipped with the norm defined above is a Banach space.

We shall recall that a Banach space is a complete normed space. That is, every Cauchy

sequence is converging with respect to the norm. To prove this theorem, we shall introduce
some useful concepts.



Definition 3. Let X be a normed space. Given a sequence of elements {f,}. We say f, is
summable to s € X if

n
S, — X where Sy = ka
k=1

We say {f,} is summable if

oo
2 il < oo
k=1

Then we have the following lemma.

Lemma 1. A normed space X is complete if and only if every summable {f,,} is summable to
some s € X.

Proof. First suppose X is complete. Given {f,} with }; || f k” = M < oo. Fix € > 0, there exists
N € N such that

(o]
Z ”fk” <€ whenever n>N.
k=n

Then we have

m
IIs;; = sl < E ||fk|| <e whenever m>n<N.
k=n+1

We conclude that {s,} is Cauchy, therefore s,, — s for some s € X.

Conversely, suppose every summable {f,} summable to some s € X. Given a Cauchy
sequence {f,}. Forallk € N there exists ny € N such that | f,, - f,u|| < 27%, whenevern, m > n;.
We may assume that n; > 1y for all k € IN. We now let

81 = fn1 and Sk = fnk —f,,k_1 for all k > 2.

It is easy to see that

n n n
Ysg=fo, and D |lsf = D2k <1
k=1 k=1 k=1

Thus it follows from the assumption that »; gy converges. That is, f, — f for some f €
X. It remains to show f, — f, which could be derived from the definition of the Cauchy
sequence. [

We now could give the proof of Theorem P.
Proof of Theorem [}. By the Lemma [l, it suffices to show every summable {f,} C L?[a,b] is
summable to some t € L%[a,b]. Given a summable sequence {f,} (3 || fk” <M < o) in
L2[a,b]. Sets, = X |4, then

n n
lIs, |l = Z|fk| SZ”fk”SM<oo
k=1 k=1

Since {s,,(x)} is increasing for all x € [a, b]. The limit

g(x) = lim 5,(x)
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exists (oo is allowed). The Fatou’s Lemma asserts that

fgz = flims% < liminffs% < M? < co.

Hence g is finite almost everywhere. Let

0, otherwise '

- {g(x), if g(x) < o0

Then s, pointwise converges to f almost everywhere. Now consider the inequality

5,00 = FOI < 2(52(x) + F2(%)) < 42(v)

holds for almost every x. The Dominated Convergence Theorem asserts that

2 2
lim [[s, = f[" = [tims, - /' = [0=0.
Hence s, — f in the L2 norm. This proves the case of f > 0. In general, we may consider
f=fr-f =
Theorem 4. [?[a, b] is separable. That is, there is a countable dense subset of L2[a, b].
We first prove the following:

Lemma 2. C[a, b] with the L? norm is dense in L?[a, b].

Proof. We first prove that every characteristic function of a compact set can be approximated
by a sequence of continuous function. Let a closed set A C [4, b] be given. Let t(x) = inf‘ [x -y
ye

be a continuous function (continuity follows from the exercise last semester.) Consider the

function

8u(0) = 1+4n-tx)

It is easy to see that g, pointwise converges to x 4. Note that

19,00 — x| < 4

hence it follows by the Dominated Convergence Theorem that

. 2 . 2
hmflgn—xAI =f,}grgolgn—x,4l =0

n—-00

This implies that the x4 can be approximated by continuous function. We now show that
this is true for characteristic function of a measurable set. Let E C [a, b] be measurable. Given
€ > 0 there is a compact set F C E such that m(E) < m(F) + €. Then |[xg — x¢ll < €. From the
discussion above, we conclude that there is a continuous function ¢ such that |[xr —t|| < e.
Thus, [|xg —t|| < 2e. Now, for a measurable function f € L%[a,b] ( f = 0), there are finitely
many measurable sets E; and positive real numbers a; such that

n n
Zaixgi <f and Zaixgi - fll <e.
i=1 i=1



This shows that there is some continuous function ¢ such that ||t - f || < 2e. This complete the
proof. O]

Lemma 3.

1. The set of all real polynomials R[x] is dense in C[a, b] with respect to the L? norm.

2. Q[x] is countable and dense in IR[x] with respect to the L? norm.

Proof. The first one immediately follows from the Stone-Weierstrass Theorem. The second
one is trivial. ]

Proof of Theorem | This is a corollary of Lemma P and Lemma | O
We now shall study the inner product structure on the L?[a, b] space. Observe the fol-
lowing property: If we are given two functions f,¢ € L?[a, b], then we have
12

i< ()" <

Hence we can define the inner product on L2. We write (f,¢) = inf fg to denote the inner
product of f and g. Here we recall the definition of inner products.

Definition 5. Let V be a vector space over F. Then inner product (-~,—) : VXV — Fisa
function satisfying the following property: (we might assume F = IR here)

1. {(f,g)=(g f)forall f,ge V.

2. {(f1+ f2,8) ={f1,9) +{f2,g) forall f1,fr,g€ V.
3. {cf,g) =c(f,g) forall f,ge Vandce R

2
4. {f,f)= ||f|| >0forall f € V,and ||f|| = 0if and only if f = 0.
The inner product structure help us to define the concept of orthogonal.

Definition 6 (orthogonal). Given f,g € V, we say f and g is orthogonal if (f,¢) = 0. A set
S c V' \ {0} is orthogonal if (f,g) = 0 forall f,g € S. Aset S c V \ {0} is orthonormal if it is
orthogonal and || f || =1forall f €S.

Theorem 7. Suppose {(4}aen is orthogonal in L2. Then it (A) is at most countable.
Proof. Without loss of generality, {¢,} is orthonormal. If ¢, # ¢, then we have

<¢“ ~ Ppr Pa - <Pﬁ> = Qo Pa) + <<bﬁ, <p5> =2.

This shows that {B(¢,;1) : a € A} is a set of disjoint open balls. Recall that in Theorem §,
we have shown that there is a countable dense subset P of L?. Thus, every open ball B(¢,;1)
contains a points x, € P. {x,} is at most countable therefore A is countable. O

Definition 8 (linear independent). Given a finite set {¢, ..., @,} C V, we say it is linear inde-
pendent if

n
Zaigoi:O = a;=a,=--=a,=0.
i=1



For an infinite set {p,},cpo C V, we say it is linear independent if all of its finite subsets are
linear independent.

Then we have the following.
Lemma 4. If {¢,},ep C V is orthogonal then it is linear independent.

Proof. It suffices to show that A is a finite set. Suppose

2,40 =0
P

for some a; € R. Then

2
7

n
0= <Z ;i ¢i> = (aipi, i) = a; ||p;
i=1
this indicates that a4; = 0 for all i. O

Theorem 9. Gram-Schmidt process Let {@;};2, be linear independent. Then there exist an orthonor-
mal set {¢p;}72, such that

span]R{gbl, O span]R{(pl, e Pi)

We will not give a proof here, see also my linear algebra note for more details. We now
give the definition of basis in infinite dimensional space.

Definition 10.
1. We say an orthogonal set {4 },cp € L?[4, ] is maximal (complete), if

(f,$a) =0, forallae A = f =0.

2. Given a finite set {¢, ..., ¢,,}. We write

1

spanp{¢y, ..., P} = { a;p; - a; € IR}.
=1

For a infinite set {¢,},cp, We write

span]R{(Pa}wEA = U SpanR{Qba}aEF'
FCA, |Fl<eo

3. We say {¢;}; is a basis in L?[a, b] if it is dense in L?[a, b]. Thatis, for all f € L? and € > 0,
there are {4,}!_; and {¢;}!"; such that

i lli(Pl' - f < €.
i=1

[o0]

Note that L2 has an orthogonal basis. {x"}5>, C R[x] generates L? and then apply Gram-
Schmidt process.

Lemma 5. Suppose {¢;} is an orthogonal basis. {¢;} is a complete (maximal) orthogonal set.

6



Proof. Suppose (f,¢;) = 0 for all i € IN. Since {¢;} is a basis, given € > 0 there exists {a,;}I;
such that

n
2 ai(Pi - f <E€E.
i=1
Then we have

&> (Suti=f, a1} = R ol + I = I

n

i=1
This shows ||f|| < € for any given € > 0 hence ||f|| = 0. This completes the proof. O
2 Fourier Series

In the subsection, we introduce the Fourier series on the L? space.

Definition 11. Suppose {¢;}7; is an orthonormal set in L? space. Given f € L?. Then

Ck:ff(Pk

s(f) = )] ckr
k=1

is called the Fourier coefficient, and

is called the Fourier series.

Theorem 12. Given an orthonormal set {p;\Y,, then for all (y;)X, we have
N N
Meaovi—fl| <D vioi-f
i=1 i=1

2 2
That is, among all choice of (y;), (c;) gives the best approximation.

Proof. 1t follows by
2

Srti-|| =(Sroi-f, Bron-1)= i+ 1A -2 By
= Y0P+ - B e

This completes the proof. O
Corollary. Let {¢;};2; be an orthonormal set.

1. For any ¢, ¢y, ..., N, 2 ci¢; has the minimum distance to f.

oo 2
2. iy |c1-|2 < || f || . This is the so-called Bessel’s inequality.



Proof. We shall only prove the second statement. We have
2

N ) N ,
Yiaoi—fl| =IfI =Dl led” > 0.
i=1 i=1

for all N. Taking N — oo gives the desired result. O

Definition 13. A sequence of numbers (c;); is said to be in ¢? if

S
Dl < .
i=1

Then we have the following theorem.

Theorem 14. Let {¢;} be a complete (maximal) orthonormal set. If ci(f) = cx(g) for all k € IN. Then
f=g
Proof. We have

f(f—g)<¢>k =0 forallkeN.
That is f — g is orthogonal to all ¢p;. We conclude that f = g. =

Theorem 15. Suppose (c;)22; € ¢2. Given an orthonormal set {p;}2, in L2. Then there is a function
f € L? such that

a=[fo amd X<l
i=1

n

Proof. Lett, = E cip; € L2. We claim (t,,)? ; is a Cauchy sequence in L2. Given ¢ > 0. There
i=1

exists an N € IN such that

(oe]
2
E lc;I” <€ whenever k> N.

Now consider

2
< 2
—t | = Zc,qbz = Y lel"<e if m>n>N.
i=n+1 i=n+1

Hence (t,,) is a Cauchy sequence in L2. There is a function f € L? such thatt, — f in L2 norm.
Finally, we have

|ff¢k—ck|:|ff¢k—ftn¢k|=|f(f—fn)q5k|S||f—tn||'1—>0~

Hence f f &k = . The second statement follows from

n
||f||2_zlci|2:<tn_f/tn_f>: ||tn—f||2—>0asn—>oo,
i=1

This completes the proof. O



Definition 16. Let {¢;}2°; be an orthonormal set. We said f € L? satisfies Parseval’s Formula
if

B = I
i=1
We now have the following.

Theorem 17. Given an orthonormal set {(p;};2,. Then it is complete if and only if f satisfies the
Parseval’s formula for all f € L2.

Proof. Suppose f satisfies the Parseval’s formula for all f € L2. If there is a f € L2, such that

2
(f,¢;y =0foralli e N. Then || f || = 0. Hence {¢;} is a complete (maximal) orthonormal set.
Now suppose that {¢;} is complete (maximal). Given f € L2. By Bessel’s inequality, we have

n 2 2
el < f <.
i=1
We now apply Theorem [[5, there is a function g € L? such that

- 2 2
a@=c=c(f) and  Pla@| =l -
i=1
By Theorem [[4, we conclude that f = g. This gives the desired result. O

Theorem 18. 1?[a,b] is isometric to £% and L?[a, b] is isometric to L?[c, d].

This is just a corollary of discussions above.

3 Fourier series on [a, D]

In this subsection, we shall now study the concrete Fourier series. That is, we will replace
the orthonormal set {¢;} with the trigonometric function {cos(nx), sin(nx)};. or {exp (ikx)};>

—00"

Let f : R — R be a periodic function with period 27. Define its Fourier series be

B, E ay. cos kx + by sin (kx),

k=1
where

o = % f_ " F(8) cos (ktydt
by = % f_ " () sin (kt)dt

We often use the complex notation

o0
Z Cr eikx
k=—oc0

In general, we say P(t) is a trigonometric polynomial of degree n if

n
P(H) = ), e, where [c] + |c_,| # 0.
k=-n

9



We have the following important property:
1 ™. 0, if m#0
— f e"rdx = :
2t J_n 1,ifm=0
This gives us an opportunity to generalize it and allow us do Fourier analysis on groups. We
will also study Fourier series on L¥ spaces.

Lemma 6. Lets,(x) = ¥,__ ¢’ converge to f € L! in L! norm. Then
L ikt
= = — t)e " dt.
co=alf) =5 [ foe
Proof. Since s, — f in L! norm. We have f | f- sn| — 0. We have
17 1T ) "
lf) = 5 f_ Sl = E( f_ (s f_ su(be” tdt)
1 " .
=5 j:n(f —s,)e M dt + .

[ g =soea <| [ -5

This completes the proof. This theorem establishes a necessary condition for a trigonometric

Note that

< -0 as n — o0,

series to converge. O

We now are going to introduce an useful theorem which is known as Riemann-Lebesgue
Theorem.

Theorem 19 (Riemann-Lebesgue’s Theorem). If f € L}, then |c;| — 0 as k — oo.

Proof. We shall use a fact (which will be proved later) that trigonometric series are dense in
L!. Given f € L! and € > 0 there exists a

N
P(t) = ), gt
k=N

such that

If - P||1 <e.
When n > N, we have

1 7T . 1 s ) 7T .
o= [ A= — ( [ ¢-pears [ p. e-mtdt)
1 (" ‘
=5 j:n(f—P)e‘mtdt -0 as n— oo

This proves the desired result. O

We now can compute and simplify the Fourier series into simpler form.
o= 3 L7 gy diengr = L [T pp| L 3 e
— ikx — P - el x—tdt:_f Al = ik(e=t) | 7¢.
Sn(X) k:z—n e k=-n 2m \[—n f( ) ‘ T -n f( ) 2 k:z—n ‘

10



Definition 20 (Dirichlet kernel). We define the Dirichlet kernel
1 n
. § : ik(x—t
Dn(x - t) = E k:_nel (x )

Then we have

1 7T
sulfin) = — [ fODx -t

Note that

1 e —1)  sin(n+1/2)t
2 eit —1 ~ 2sint/2
We have some important properties:

D,(t) =

Proposition 1.
1 " 1 "
1. D,, is an even function and — f D, (t)dt = — f D, (Hdt =1.
wJd_n 21 Jy

2. D, < @/2) B, |e™]| = n + 1/2).

Tt
3. ID,(t)] £ —.
D0 < 57

Proof. Some simple calculus calculation gives us
t t
sin(—) > — whenever 0<t<m
2] m
This proves the Proposition 3. O

Now we shall introduce a classic trick. We write
Dn—l(t) + Dn(t)

D,ﬁ7 = >

Then we have

Dt ) = sin(n—1/2)t +sin(n +1/2)t _ sin(nt)
o 4sin (£/2) ~ 2tan (/2)
and
D, -D
D, - Diy = 2P _ o5t
This implies that

%%@=%f7mmu4w
1 Tt i
R (f_n F@Dr =t + f_n FO(D, - Dh)x - byt ).

When we study whether s, (f; x) converges to a function, we may only need to study whether
the sequence

f " FODA (- bt

converges, since Riemann-Lebesgue’s Theorem (Theorem [[9) asserts that

fﬂ f(D, - Dﬁ)(x —Hdt — 0 as n — oo.

11



Lemma 7. Suppose f € L!. Then
—t
lim s,,(f;) = lim — f £ Sm”(x it

n—oo T

provided that the limit on the right side exists.

Proof. We first define a function ¢(t) := defined on [-7t, r]. By L'Hopital Rule,

tan (H2) (¢/2)
¢ is bounded. Thus it is integrable.

1 " § 1 ™ f(t)P(x — t)sinn(x - t) 7 sinn(x —t)
;f_nf(t)Dn(x—t)dt - %(f_n . dt+j:nf(t)Tdt).

t
Note that by Riemann-Lebesgue’s Theorem (Theorem [9) again,

fn f(HPpx - t);in n(x - t)dt o

This proves the theorem. [
Here are more properties of Df.

Proposition 2.

1 T
1. Dﬁ is an even function and - f D,ﬁl(t)dt =
-

3.

Since D} is an even function and f is periodic, we may write
brn =2 [ FoDbx -
sn(f;x) = - f(t)Dr(x — t)dt
-7

1 (™ f+ B+ fx-b)
- ;f_n . D ()dt

_ %fon (fGr+ 1) + fx - ) Dieyat

We now gives the following theorem. This theorem is known as Dini’s Theorem, it pro-

vides an sufficient condition for a Fourier series to converge.

Theorem 21 (Dini’s Theorem). Suppose f € L[-n,nt]. Given x € [-m,mt]. If there is a real
7T
J

Proof. 1t suffices to show that sﬁ( f;x) = Aby discussions above. Since

number A such that
fx+t)+ f(x—1)
2

dt
—A|T<OO

Then s, (f;x) = A.

17,
A=ax1=4x— [ Diwat
nJ

we have

T f(x+1) +f(x—t) sin (nt)

12



Note that
fx+H+flx-1t)
2

fx+t)+ f(x—1) 1 1\ .
5 - A| . (m - ?) S (nt)dt

_sin (nt)

A dt

Z Sﬁ(f;X)—A| sfon
),

fx+H+flx-1)
2

f(x+t)-2|-f(x—t) _A| , (; - 1) € L'[-mt, 7]

Since

1
A| i e L'[-n, n]
.(fixx),

2tan (t/2) t
Riemann-Lebesgue’s Theorem asserts that both integral converge to 0 as n — co which indi-
cates s,ﬁq(f; x) — A. O

Corollary. In particular, f € C'[-7, 7], then s, (f; x) — f. In fact, if f is locally Lipschitz, then
sy(f;x) = f(x) at that point x.

Theorem 22. Let w be a function defined by

1 s
w(fin) =5 [ |fec+n-folat
Suppose

[ ot E<w

Then s, (f;x) — f(x) almost everywhere.

Proof. Consider the function I defined by

I(x) = n|f(x+t)—f(t)|£
0 t

Then we have

j:ZI(X)dx: fij{‘)ﬂ |f(x+t)—f(t)|?-dx

TC TC dt
= [ [ 1fa+n-folax-T (Tonelis theorem)
0 v-n
" dt '
=2n f w(f;x) - < <o (by assumption).
0

Hence I(x) is finite almost everywhere. That is,

T dt T fx+18)+ f(x—1t) dt
f|f(x+t)—f(x)|'7<°°=>f f zf —f(x)-7<oo.
0 0
By Dini’s Theorem (Theorem 1)), we obtain s,,(f; x) — f(x) almost everywhere. O

The convergence of s,(f; x) depends on the local properties of f. Even f is continuous,
su(f; x) can still diverge at some points. We now shall show the following theorem.

Theorem 23. There exists a function f € C[—mt, 1] such that s,(f;0) diverges.

Before proving this theorem, we shall first prove some useful theorems.

13



Theorem 24 (Uniform bounded principle). Let X be a complete normed space and let Y be a
normed space. Let {T,};_, be a family of bounded linear transformation from X to Y. (The bound-
edness might not be uniform.) Assume that for all x € X, the set {T,,(x)};~; is bounded in Y. Then
{T,};=1 is uniform bounded. In other words, there exists a number C > 0 such that ||T,|| < C < oo for
alln € IN.

Proof. We first claim that there exist x5 € X, € > 0 and a constant K > 0 such that ||T,(x)|| < K
whenever ||x — x0|| < €. If the claim is not true, then for all x € X and € > 0,

U T,,(B(x; €)) is not bounded.

n=1

Let xy be an arbitrary vector in X, and let 7y = 1. Consider By = B(x; 7). There exists x; € By
and n; € N such that ||T,,ll (x1)|| > 1. Since T, is continuous, there is r; € (0,1) such that
|T.,)|| > 1 whenever x € By := B(xy;r1). Suppose xy, ..., x; and ry, ..., 7 have been chosen.
Choose X417 € By := B(x;; 1) and 11,7 such that ||Tnk+1(xk+1)|| > k + 1. The continuity of T,
indicates that there is a number r,,; € (0,1/(k + 1)) such that B;,; C By and

k+1

||Tnk+1(x)|| >k+1 whenever X € By i= B(Xpa1; Trr)-

Then (By) is a decreasing closed ball on X and the diameter of these balls converge to 0 as
n — oo. X is complete, hence

(8. = o)
n=1
Note that
@l = a5 koo

which contradicts to the assumption that {T,(x)} is a bounded set in Y. Hence our claim
is true. There are x; € X, € > 0, and a constant K > 0 such that ||T,(x)|| < K whenever
||x - x0|| < e. Now for all x € X, we consider

ex
Z 1= — +Xg.
[lxll

We have ||T,,(z)|| < K. This implies that
€X
Tn (_) + Tn(xo)

& <K = [Tl — < K+ |T,(x0)|

llxll

= Tyl < (K+ Cyp) - € Ixll,

where C,, > 0 is the constant that
[T, (x0)|| < Cyp-
This completes the proof. O

Lemma 8. Recall that D, is the Dirichlet kernel. We have the following.

L, = % f ID,,(t)| dt € ©(log 1).

=Tt

14



In other words, there exist constants ¢, > ¢; > 0 and 7 € IN such that

cilogn <L, <c,logn whenever n > ng.

We will omit the proof here.
Proof of Theorem 3. Suppose such f does not exist. Let T,, : C[-mt,t] — C be a family of
functions defined by

1 7T
Tu(H) =su(Fi0) = — [ D,

Since we assume each f € C[-m, n], its Fourier series s,(f;0) at 0 always converge. This
implies that there is C; > 0 such that

[T < Cf < co.
By the Uniform Bounded Principle (Theorem P4), there exists C > 0 such that
|T.(f)|| < C < o foralln € Nand f € C[-7, 7).

It now suffices to show that for all M > 0 there exist k € N and f; € C[-m, ] such that

|Te(fr)| > M.
This follows by Lemma [, and the fact that

7T 2 7T T
( f |Dn(t)|dt) s( f |Dn(t)|2dt)( f 1dt):2n-Tn(Dn).
0

Here we shall introduce some more properties of Fourier coefficients and Fourier series.
Proposition 3.
1. Given f(t) and given a € R, let f,(t) = f(a + t). Then
clf) = [ faeat = [ f+ae = [ e+ et = o (f)- e,
2. Given f(t) and let g(t) = f(t) - €™. Then
lg) = [ et = e,
3. Let f € L'Y[-m, mt]. Let

F(t) = c + f t F(s)ds.
0

Then
Ck (f ) ikt

F(t) —cot ~ ¢’ + 2 o

k+0

4. If f is absolutely continuous and assume f and f’ is periodic. Suppose

s .
f~ Z cpet.
k=—c0

15



Then

o0

fr~ Y] ke,

k=—00
5. If f is absolutely continuous, then |ck( f )| = o(1/k).
6. If c;(f) and ci(g) are the Fourier coefficients of f and g respectively, then

frg~ Y, alHer(ge™.
k=—o00
The proposition above use the notation *, it means “convolution”. We shall give a defi-

nition here.

Definition 25 (Convolution). Let f,g € L[-mr, 1t] be two periodic functions. We define the
convolution of f and g be

fxgx) = f_ flx—t)g(t)dt = f_ f(Hg(x — tdt.

Proof. We shall prove the non-trivial ones.

+27
3. Note that F(t + 2nt) — F(t) = ft f(s)ds = 2mcy(f). Let H(t) = F(t) — co(f) - t. It is clear
t

that H is a periodic function. We now compute its Fourier coefficients.

27t - e (H) = f H(b)e *dt

= H(n)%i—kikn) —H(_n)w + _n % ikt gy
B 2nci(f)
T ik

4. We have
t
@ =fem+ [ e

for almost every t € R. By the last proposition, we obtain
Ne o o cx(f’)
f&)=co(ft~c + 3] %ekt‘.
=
The assertion follows from cy(f”) = 0. (f is periodic.)

5. Since f’ € L[-m, 7], it follows by the Riemann-Lebesgue Theorem that |ikc,| — 0 and
thus |ci| = o(1/k).

6. Consider

al(f*g)

(e

= ( f ' g(t)e‘iktdt) ( f ' flx- t)e‘ik(x‘t)dx) (By Fubini’s Theorem.)
= c(f) - ek (g)-

16



It is worth noting that Fubini’s Theorem is applicable since
sl <11 - e
which could be obtained by applying Tonelli’s Theorem to f | f | * | g|.

1/

Remark. In fact, we have f is [a]-order differentiable if |ck( f )| = o(1/k%).

4 Cesaro sum of Fourier series

In last subsection, we find that s,(f; x) might not even converge although f is continuous.
We want to study whether it converges in Cesaro sense.

Definition 26. A sequence of number {cj}]?’i1 is said to be Cesaro summable to L, if

ci+Cp+ - +Cy

— L
n
as n — oo.
We write
oy Solfsx) +si(frx) e+ 8,(f5x)
ou(fi) = — .
m .
Note that s,,(f;x) = Z cee’™. Some calculations give us
j=—m
ca) — N 1 |]| ijx
on(f;x) = _2_: Tl cier.
j=—n
Also we have
.« _f*Do+--+f+D, . Dy+--+D,
nou(f;x) = n+1 =f= n+1
Now we simplify it. We often write K, to denote
D0+"'+Dn _ ]_ 5 zn:ei(j+1/2)t 1
n+1 2 sin (t/2) = n+1
__ b e ] ‘el(n,ﬂ)t L
2 sin (¢/2) 1-e¢* n+1
1 sin (1 + 1)t/2)\”
S 2n+1) sin (t/2)

It is worth noting that some other books often define
1 sin nt/2 2
" 2n \sin(4/2)

which is more reasonable. However, I am not interested in fixing up this issue in this note.

Similar to what we have done before, there are some basic properties of K,, could be derived
immediately.

17



Proposition 4.
1. K,, is nonnegative and K,, is an even function.
1 s
2 = f K, (Hdt = 1.
TJ_n

1
n+1

N1 n+1 1
3. K, (t) < Z (] + —) < 5 (Recall that |D,(t)] < n + E)

AN
7'(2
2(n +1)t2

K, (Hdt = % fo (fGc+ B + Fx = B) K (b)dt.

4. K, (t) < % Another upper bound is

5. o= L [ LG

Although it is very likely that a Fourier series of a function may not converge, it is easy
for it to converge in Cesaro sense. We have the following theorem.

Theorem 27 (Fejer’s Theorem). Suppose f € L}[-m, 1t]. Assume that both f(x+) and f(x—) exist.
Then

ou(f;x) =

fO) + f(x)
> :

Proof. Without loss of generality, we may assume f(x) = ( fx+)+f (x—)) /2. (Changing a
value of a point does not impact the Fourier coefficients.) Now we have

2 7 _
an(f;x)—f(x)=;f0 (f(x”);f(x t)—f(x))Kn(t)dt.

Given € > 0. There exists a 6 > 0 such that

|f(x+t)—f(x+)|<e,if0<t<6
[fGx+) = fx-)| < e,if =5 <t<0

This implies that

fx+t)+ f(x—1)
2

<eg, if |t <o.

- f()

It follows that

fix+t)+ f(x—1t)
2

€

K, (Hdt < e - fo "kt = (1)

- f@) -

r

and that
e
2(n +1)6%

fx+t)+ f(x—1t)
2

7T
C::f
0

Together with ([ll) and (P]), we conclude that

= f@)| Ky (t)dt <

(2)

r

where C is the constant

Hoe 1=l

C
|0, (f;%) — F(x)| < e+ (nfw

This shows g,,(f;x) = f(x) := 1/2)(f (x+) + f(x-)). ]

18



Remark.
1. If f is continuous at x, then o,(f;x) — f(x).
2. If f is continuous on [c,d] C [-7, 7], then ¢, = f uniformly on [c, d].

Proof. We shall give a proof to the second assertion. For all x € [c, d], there exist N = N(x) € N
and 6 = 6(x) > 0 such that

|an(f; t) - f(t)| <e€ whenever t € B(x;6)and n > N.

The remaining part follows by the fact that [c, d] is a compact interval. O

Corollary. Suppose f is continuous on [-7, 7t], then given € > 0, there is a trigonometric
polynomial P such that

|P(x) - f(x)| < € for all x € [-7, 7]

This corollary follows by last remark. We now prove a similar result, however not under
the supremum norm, but under the L! norm instead.

Lemma 9. Suppose f € L[-7, ]. Given € > 0. There is a trigonometric polynomial P such
that

f_ﬂ |f(x) - P()| dx < e.

In other words, ||f - P||1 <e.

Proof. We may assume that f > 0. (Recall that f = f* — f~.) It is easy to see that this lemma
holds if f is continuous function (by the last corollary). Now suppose f = x4, where A is a
closed set. In Lemma P}, we have shown that there exist continuous function g, such that

1
s~ £l < -
This implies

Vb—a

I -1, <L
Now let E be a measurable set and let f = xg. Then there exist closed sets (4;);en such that

m(E) < m(A)) + %

Hence ” f-x Af”l <1/jand || f- g” < € for some continuous function g. We have proved the
case when f is xg, E is a measurable set. Now for general integrable function f, we know
that there is some closed set E; and ¢; € R such that

n
f - E GXE|| <e
j=1
1

Thus we see that there are some continuous function g such that || f - g”l <e. O

We now generalize the idea of L? and L! norm to general L” norm.
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Definition 28.

1/p
1. If1 <p<ooletlP[-n, ] ={f : f|f|p < oo}, and we use ||-||p = (f |f|p) to denote the

standard norm on L space.
2. If p=oo,let
L®[-n, ] = {f : AM > 0 such that |f(x)| < M < oo for almost every x}.

We use || f ||Oo = inf M to denote the norm on L, where the infimum is taken among all M
such that | f (x)| < M < oo almost everywhere.

Theorem 29 (Continuity in the L” norm). Let f € LP[-7t, 1] (1 < p < 00). Then

7T
lim f ft+h) - F)f dt = 0.
Proof. First if g is continuous on [-7, 7t], then it is clear that
lim lg(t + 1) - g)[ dt =o.

In the proof of Lemma J, we have shown that every function f in L!, there exists a continuous
function g such that

If =l <e
A slight modification on the proof give that: if f € L7, there is a continuous function g such
that

If - gll, <e.

Now we have

[ lrasm- sl ar= [ |5e+m-ga+m+ge+n-gm+g0- o)

n n n
<3 (f_n Gt + 1) =gt + ) dt + f_n gt + 1) — g dt + f_n st - o) dt) .
The right side converges to 0 as h — 0. O
Theorem 30. Let f € LP[-1, 7] (1 < p < 00). Then,
1. ||lo,(f) —f||p — 0asn — oo.
2. ||an(f)||p < ||f||pfor all n € N.
We shall first prove another very useful result, which is known as Hoélder’s inequality.

Theorem 31 (Holder’s inequality). Let1 < p < 00,1 < g < oo be two integers such that
1 1
-+-=1
P4

iest=( 1) ([ir)

fg”1 < ||f||p . ||g||q . The latter statement is valid when p or q is co.

Then we have

In other words,
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Proof. We may assume that p, g # oo, otherwise it is trivial. We first claim that

5| < %If(x)lp + ; ls)[" for all x. 3)

If the claim is true, then for any || f ||p =1= v we have

1 1 1 1
Jlrsl=s J1 o2 Jlal =2+ =1 = Il <1

For f and g such that || f ||p #1or ||g|| # 1, we could normalize it to 1. It now remains to show

our claim is true. We write a = ,s=1/p,and t = 1/q. Then (B) is equivalent to

V' <as+ bt < sloga+tlogh < log (as + bt),

holds foralls+t =1,s,t € (0,1), a,b > 0. The concavity of log implies the theorem. ]

Proof of Theorem B(. Our objective is to show that f |an( -f |p — 0. Let

p
F(P = f fe+ 5 — ) dr.
We know that F(t)” is continuous at t = 0 (Theorem P9Y). Note that

1 7T
0u(fi0 = f@) = = | ()~ K, (.
Let g € (1, 0] such that1/p +1/qg = 1. Then

G0 - s < [ e - feol Ko - K

(f f+ - f) K(tdt) (f K, t)dt)

= el ( f fac+H-fof K (t)dt)
The inequality (#) holds by Holder’s inequality (Theorem PBT]). This gives
1 7T
oufix) = e << [ [+ = peof - Kt
7T 1 7T 7T
— f_n lou(f;) - Fo) dx < ;f_n f_n FG+ )= F)[ - K (bt
P

L= f f fx+ ) = f@ - Ky(t)dxdt

- %f; F(t)PK, (t)dt = %on(FP;O) — 0 (Theorem P7).

q

We can exchange the order of integration in (&) by Tonelli’s Theorem. The inequality above
proves the first statement. Similarly, we have

4 p
o0l < (% | CET RS Kn(t)mt)

1 u P W " " 1 7 p
g(; (f_n [f(x+1)| Kn(t)dt) (f_nKn(t)dt) ] = ;f_n [f(x+ 1| Ky (Dt
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Hence

7T 1 I 7T
||an||§=f_ |0n(f;x)|pdx§;f_ f f+ || K, (b)dtdx

1 7T 7T
_ Ef_n f_n If e+ ) K, ()t

1A o
=—P | K,(pdt

=Tt

This completes the proof. O
The second statement in fact also holds when p = oo and in that case we could consider
the inequality

1 TC
loutHll, = = [ llFe+ il Katorde < 1]
We now give a remark on convergence of s,,(f; x) and o,(f; x).
Remark.

1. In 1953, Kolmogorov, a Soviet mathematician, had proved that there exists a function
f € LY[-r, ] such that s, (f; x) diverge almost everywhere. A year later, he published another
paper showed that there exists f € L![-7, 7] such that s, (f; x) diverge everywhere.

2. Carleson (1965) showed that for all f € L?[-7, 7], s,(f;x) converges to f(x) for almost
every X.

3. Hunt (1968) showed that for all f € L/[-7t, 7] (p € (1,0)), s,(f;x) converges to f(x) for
almost every x.

However, these theorems are very hard to prove, we will not give a proof here.
Theorem 32. Given a sequence of numbers (¢;)%. Let
o,(t) == Z 1- l c;ellt.
" , n+1)”’
lil<n
Then Y, c]-eif tis the Fourier series of f € C[-m, 7] if and only if o,, converges uniformly.

Proof. 1f cheijt is the Fourier series of f € C[-m, n], then o, converges uniformly by the
remark of Theorem [7. Now suppose o, converges uniformly. Since (0,,) are all continuous,
there exists f € C[-mn, ] such that o, =3 f. We claim that

1 Tt y
= o f F(he-itdt.
It follows from

1 " » 1 T ’
—t 44 — ; —1t
27 j:n fBedt 2 ,}EEIO j:n ou(t)edt

This proves the theorem. O
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Lemma 10. Let1/p +1/g =1 (1 < p < o) and let f € L![-r, 7] such that

[ ro =<k,

for all simple functions ¢, where K < oo is a positive constant. Then f € L’[-7n, ] and
171, = .

Proof. If p =1, it suffices to choose ¢ = sign(g) € L. Now assume that p € (1, ). Let {¢,,}
denote a sequence on nonnegative simple functions such that ¢, < ¢,,,; and ¢, — | f |p. Since

0< i’ <|f] € Ll[-m, 7],

the functions
1q .
h, = ¢)n/qs1gn(f)

are simple and in L[~ 7t]. It follows that

f Pn = f o'’ < f [l on” = ffh < K, = K(f %)w

This gives
o \WP
U1@)SK
-7

By Fatou’s Lemma, we conclude that

n—o0

o \UP
T (nm inf qbn) <K
P -
This proves the case when p # co.
Now assume that p = co. For any € > 0 set
E. = {x € [-7, 7] such that |g(x)| > K+e€}

and let ¢ = xg_ - sign(f) be a simple function. Note that f € L' and the set m(E,) < 2m,
therefore we have

(K+e)-m(EQ) < | [ fo| < K-m(Eo).
Thus m(E.) = 0 for all € > 0. O

Theorem 33 (Riesz representation theorem). Given 1/p+1/q =1 (1 < p < c0). Then there exists
a bijection
Li[-m, ]V «— LP[-7, 7).
More precisely, for each € € (L)Y, there is a function f € LP such that
f@=f&-

Note that here we write V'V to denote all linear “bounded” functional on V.

Proof. Let F(x) = €(X[-rx). We claim that F is absolutely continuous. Let {[; = (a;, b))} be
finitely many disjoint intervals be given. Define ¢(t) := Z sgn(F(b)) - F(a;)) Xli(t)’
j
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Then,

¢||Z < Ej |I]-| and it implies that

1/q
N [Ft) - Fa)] = £0) < M-}, < M- [z |1]-|] -

j j

This shows F is absolutely continuous. Thus there exists f € L}[-7, ] such that

F(x) = f_ f(tdt.
It implies that
X -r0) = f_ F(®) * X[=n(B)dt.

Since £ is linear, for any step function g = 3 4;x;, (finite linear combination of x;;), we have

()= | gt

Now let ¢ = xg be the characteristic function of a measurable set. Since E is measurable,
then for any given n € IN, there exist finitely many disjoint open intervals (I]-);.‘:1 such that

k k
1
UJLoE and Y m(@) <m(E)+ -
) i1 n
=1 =

Define

Then
1
[l-gl<=  and  Jg-gl,, <1

sup
[ sz [ s

by dominated convergence theorem (|| < —Sn ||Sup < 1). This shows that for any simple function

Since g, — g, we conclude that

g, we have {(g) = ffg.
Note that

[ fe=t@ =M,

for any simple functions g (recall that ¢ is bounded). Apply Lemma [[(J on f, we conclude
that f € LP. Now let g be any functions in L7 and let ¢, be sequence of simple functions that
converge to g in the L7 norm (this is possible since simple functions are dense in L7 space).
Then

[ 59| <Al ool 0

as n — oo. This implies that
to -0 and [ fo,> [ fg
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thus ;
1= [ fs

for any g € L7. This completes the proof. O

Theorem 34. Let {f,} be a bounded sequence in LF[-7t,1t], 1 < p < oo. That is, there exists M > 0
such that ||fn||p < M < oo forall n € IN. Then there exists a subsequence {f, } of {f,} and a function
f € L? such that

lim [ £, (g0t = [ fogar
holds for all ¢ € L9[-m, ], where 1/p +1/q = 1. We said the sequence {f,, } converges weakly to f and
write f, — f.

Proof. We first sketch our proof.

Step 1: Prove that there exists a subsequence {f,, } such that the integral

[ futogwa

exists for all trigonometric polynomial ¢ with rational coefficients.

Step 2: Prove that for each g € LY, the limit
kh_)r?o f fn,8 exists.

Moreover, g — klim f fn8 is alinear bounded functional.

Step 3: Apply the Riesz Representation Theorem (Theorem): Every linear bounded func-
tional on L7 can be represented as L(g) = (f,g) for some f € L? that does not depend on the
choice of g.

We first denote all rational coefficients trigonometric polynomials by A. It is countable.
We may write A = {gj}]?’il. Then we have

[l = ([150)" ([lef) " = M-, <

There exists a subsequence {f 9)} of {f ,(10) := f,} such that

lim f fﬁll)gl exists.

n—00

We repeat this process. More precisely, suppose the subsequence { f %) has been constructed.

Then
1/p 1/g
7 gea| < (JI]) ([ loenl’) < M- gl < .

There exists a subsequence { ,‘J‘*”} of { ﬁlk) } such that

lim f fflkﬂ)gkﬂ exists.

n—oo

(k)
n
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It is easy to see that {f ") is a subsequence of {f,,} and that

lim f fn gk exists for all k € IN.

n—oo

This proves the step 1. We now write f,, : f P
Now let g € LI[-n, ] be given and let e > 0. Then there exists p € A such that ||g - p”q <e
since A is dense in L7 (Theorem ). Note that

lim f f,((k)p exists.

k—oo

Hence there exists N € IN such that | f ( ,(1”) - %ﬂ )) p| < eforall n,m > N. Therefore,

U( (n) _ (m) p| |f p)| |f () f(’”)) |<2M cte

This shows that the limit
lim | fi'g (k)

k—oo

exists for all g € L. It is clear that the map

e [

| f fu8

It indicates ¢ is a linear bounded functional.
It follows from the Riesz representation theorem (Theorem B3) that £(g) = f fg for
some f € L? that does not depend on the choice of g. This proves the theorem. O

is a linear map. Observe that

< M- ],

The theorem above help us to prove the following necessary and sufficient condition for
a trigonometric series to be the Fourier series of an L? function f (1 < p < o).

Theorem 35. Let
o iy
— plix d — 1-— pljx
s(x) j:E_OOI cje an Op |]~|§<n( p— 1]c]e

be a trigonometric series and its Cesaro partial sum. Then s(x) is the Fourier series of a function f € L?
(1 < p < o0) if and only if

loall, < K < oo.

Proof. If s(x) = s(f; x), then we have shown in Theorem B0 that ||o,,|| p < || f ||p. Now suppose
II(JHII;7 < K < oo for all n € N. By theorem B4, there exists a subsequence {0, } and a function
f € LF such that g, — f. Fixj € N and let g(t) = e”it. Then we have

(1_nk|]11] ffg

5= [ fg=¢
26
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This shows that s(x) = s(f; x). O

We now shall start proving that if f € L'[-m, 7t], then 0, — f almost everywhere. This
theorem however need some preparations first.

Lemma 11. If f |8n -8 | — 0 asn — oo. Then there exists a subsequence {g,, } such that
Sn, — § almost everywhere.

Proof. For all « > 0, define
X(a,n) = {x : |g,(x) - g(x)| > al.

1
Then we have m(X(a, n)) < > flgn - g|. Let @ =1/j, j € N. There exists n; € N such that

1 1
m|X|-,n|| <= whenever nzmn;.
J 2
Then it is clear that g, — g almost everywhere. O
Lemma 12. If f € L![-7, 7], then
€
fo f(x+ ) — f()] dt = o(e)

for almost every x.

We will not prove Lemma [[7 here, since it is a homework problem. We now could give
a proof to the following theorem.

Theorem 36 (Lebesgue). If f € L}[-m, 71, then 0,,(f; x) — f(x) for almost every x.

Proof. Recall that

2| (™ -
bgﬂ@—f@ﬂzgyﬂ(f@+ﬂ;fw ﬂ—f@ﬂﬁﬁﬁ+
Let
= LS N
B fol/n f(x+t);f(x—t) ~ F| K, (0t
/3 _
Cw)= [ j FEDATED  po o

It is clear that

Tt
5 |0n(f; x) —f(X)| < Ap(x) + B, (x) + Cy(x).
It suffices to show that for almost every x, A, (x), B, (x), C,,(x) = Oasn — oo. It is worth noting
fx+DH+f(x-1)

M(x) := j: >

exist for all x. Now we start estimate A,,, B,,, and C,,.

that the integral

o)
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2

: T
1. Estimate A, (x). Recall that K,,(f) < TR we have
fatD+flan o
2n+1) Jy4n 2 flx

This shows that A, (x) converges to 0 for every x.

2. Estimate B,,(x). Recall that K,,(t) < (n +1)/2 < n, if n > 1. We have

2 i 2

7T

<A <
0= A < t2 =2n+1)

M(x) - Vn — 0.

In -
Oan(x)Sn-fl f(x+t);rf(x ) ~flar
0
From Lemma [[2, we have
Ul fx+1) + f(x—t) _o(l/n)
n-fo > —f(x)|dt—1/—n—>0 as n— oo

for almost every x. This shows that B,,(x) — 0 as n — oo for almost every x.

3. Estimate C,,(x). Similar to (1), we have

n2 VA
0<Cyl0) < - fl
f(x+s)+ f(x—5s)

/n
£
R= | -

Lebesgue’s main theorem asserts that F, viewed as a function of ¢ is absolutely continuous

dt
2

f(x+1t) ;Lf(x—t) - )

Define the function

ds < M(x).

and monotonically increasing. Integration by parts give us

1 fl/% f+D+fx-t) i _1 ()1/%+ Zfl/%l: o
n Jip 2 n t t=1n MY Un SR
F.(1/4 2 (VN g
< M _n-F(1/n) + —f ) .
\/ﬁ nJiy t
Observe that

R _ M@
Vo n

asn — 0. We also have n - F,(1/n) — 0 as n — oo for almost every x (Lemma [Z). It now

0

suffices to show that for almost every x, the integral

2 PV g
z f ) 5 — 0.
nJiy t

Lemma [[J asserts that

RO _ )

for almost every x. Fix such x, given € > 0, there exists an N € N large enough, such that

F\(t)
t

< € whenever t <1/ VN. Now we have

2 UVn dt 2¢ Vg 2
—f r 2 _—ef == -y <2e
nJq n t

n 27 n n
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whenever n > N. This shows that for almost every x, C,(x) — 0 asn — oo.

Discussions above prove the theorem. O

5 The conjugate Fourier series
We now turn our attention back to s,(f; x), the Fourier series of f. Now we define the

conjugate Fourier series 5,(f; x) of s,(f; x) = a¢/2 + z(ak cos kx + by sin kx) defined through
k=1

n
5,(f;x) = Z(ak sin kx — by cos kx).
k=1

We have

1 7T n
5,(f;0) = = f £ (Z sin k(x - t)] dt.
Ttd-n k=1
Similarly we may define

Definition 37 (conjugate Dirichlet kernel). The conjugate Dirichlet kernel D, is the kernel
defined by
cos (t/2) — cos (n +1/2)t

2sin (t/2)

D, (t) := En] sin (kt) =
k=1

For simplicity, in the discussion below, we use the notation

(x+t)—-f(x-1) (x+t)+ f(x—-1)
putpy = LEXSCZD -y S LED TS
to denote the odd part and even part of the function f(x+t) = f,(t). Recall that Dini’s theorem

(Theorem P1)) states that if

f” |f(x+1t) +f(;c—t) —2f(x)|dt <o,
0

then s, — f(x). Similarly, we want to find some sufficient conditions that the series 3, or §El

are convergent, where 's’g is defined as (3,, +5,_1)/2.
Note that

1 ™ ~ 1 ™ ~
50 == [ f@Dr-ndt=-— [ fex+ 0D, 0t

cos (t/2) — cos (n +1/2)t

2sin (t/2) at.

o o _ 2 [m
=== [+ oDt == [ un0-

Some simple calculations give

2 (7wt 2 [Tyt cos (nbdt
)y emim T

i PN P ——
Sh(x) ._2(5,1 +5,-1)(x) = - 2 tan (42) 2 tan (£/2)

1 -1 7
5,0 -5 =56~ 500 = = [ pu0)cos (aat
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Py (t)dt

o 2tan (42) exists, then by Riemann-Lebesgue Theorem

If we assume that the integral

(Theorem [[9), we have

lybx(t) cos (nt)dt ud
f 2 tan (42) —0 and fo y(t) cos (nt)dt — 0

as n — oo. Thus, in this case,

_Pu(Ddt
Su(0) = fo 2tan (12)°

_Yu(b)at

tan (¢/2)

gral might not exists (See Theorem BY). Luckily, we can consider the principal value of the

f”f(x+t) fx—1)
¢ 2 tan (t/2)

So, it is intuitive to study whether the integral f > exists. However, this inte-

dt. In fact, later we will see that the

integral, that is, the limit lim ——
e—0t T

limit exists provided that f € L![-7, 7t].

Theorem 38 (Lusin’s Theorem). There is a continuous and periodic function f € C[—oco, o] such
that

dt = +o0

.f”VW+ﬂ—f@—ﬂ|
0 t

for every x € [-1, mt].
Remark. Since this theorem is not covered in class, we will not give the proof here.
Now we can define the concept of the conjugate function.

Definition 39 (conjugate function). Given f € Ll. We first consider the truncated conjugate
function. Given 0 < € < 7, let

fe()___f”f(x+t f(x—t) 1 f(x+1) it

2 tan (t/2) 70 Je<lt<r 2 tan (¢/2)

Then we define the conjugate function f by

T f(x+1t) - f(x—t)
nj; 2 tan (/2) at.

f(x) = lim -

e—0"
It is clear that if the singular integral

1 ™ f(x+1) f(x—t)
_Efo 2 tan (42)

exists, then

1 (T fx-D
f) = T fo 2 tan (#/2) at.

Remark. There are some books calling the map

T f(x+t) = f(x— L
f(8) > Hof () = - L wmm)dtmdﬂW+WM—gyum

truncated Hilbert transform and Hilbert transform, respectively.

Now our objective now is to show that the conjugate function exists.
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Theorem 40. Suppose f € L}, then for almost every x,
G(x) = fiu(x) = 0

asn — oo,

Here &,, denotes the conjugate Cesaro summation of the Fourier series. More precisely,
it is defined by the conjugate Fejer’s kernel

— 1 | & cos(t2) - cos(n+1/2)t

Ky(t) = —— (,z:‘) 25 (2) J 0 <t <m)

K f 1 —sin(n + 1)t
= ) 30 T B Dysin ) 2 Z S = T sl

This gives

~ 1 t
Kn(t) - E COt§| < W,
where the tightest C is about 2.47, we just simply use C = 3. We now could give

Proof of Theorem [(}. Note that

1/n

~ 1 t ~
s (5n(x) —fl/n(x)) = - f(x + DK, (Hdt + f f(x+1t)|zcot = —K,(t)|dt
- 1n<lti<n 22
The remaining estimation is very similar to the proof of Theorem 6. 0

Corollary. If f € L?[-7, 7t], then the conjugate f(x) exists. Moreover,

71l < [|f]l, - (4)
Proof. Since f € L?, we have Z ekl = f | f | < oo. Note that if s(f;x) = Z cee’™, then
k=—o0 k=—00
S(f;x) = Y, —i-sign(k) - cxe™*. Write
k=—oc0

Cx = —i - sign(k) - c.

Then we have Z IEkI2 < oo. By Riesz-Fischer Theorem (Theorem [[5), there is a function
kez

¢ € L2 such that

s(g) = Y, &e'™ =5(f).

keZ

f|8| —Z|Ck| <Z|Ck| <f

keZ keZ

Moreover,

therefore ||g||2 < || f ||2 Since 5,(f) = s,(g), 3,.(f) = 0,(g)- The theorem we just proved (Theo-
rem fQ) asserts that

G,(f;x) - f 1n(x) =0 for almost every x.
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Lebesgue’s Theorem (Theorem B) asserts that 0,,(g; x) — g(x) — 0 for almost every x. There-
fore, we conclude that

Fim(x) = g(x)
for almost every x.
Note that for any 1/(n + 1) < € < 1/n, we have

1 fee+h) - flx—t)
fe@) = fim@) < = f1 sy | 2tan (¢2) |dt

1 1 1/n
< —
= 7 2tan (12(n +1)) J1ym+1)

1/n

[fCc+1) - fx—p)|dt (5)

n+1

1/n
< f |[f(x + )| dt.
-1/n

Tt

By Lebesgue’s differentiation theorem, we obtain that for almost every x,

Fe@) = fipulx) > 0.
This shows that
felx) - g(x)

for almost every x. The inequality (f) can be seen from the fact that ¢ = f almost everywhere

[kl < [1

We now introduce a new function called Hardy-Littlewood maximal function.

and

Definition 41 (Hardy-Littlewood maximal function). Given f € L!(R), define its Hardy-
Littlewood maximal function

f(x) = sup fh |f(x + t)ldt

h>0

By Lebesgue’s differentiation theorem, f*(x) > f(x) for almost every x.
Also, we shall write o*(f;x) = sup |an( f; x)| to denote the maximal arithmetic mean
n>0
(Cesaro sum) of Fourier series. When f € L!, 6*(f; x) exists almost everywhere, since 5, — f
almost everywhere.

Theorem 42. The following statements are true.

f P
. 1

F@l>ahs- [l

The proof is not covered in class, hence it is omitted here. However the next theorem

<C,-

1. For1 < p < oo, we have

y where C, = C(p) is a constant.

2. m({x

help us to establish some relation between f*, ¢* and f.

Theorem 43. There exists ¢ > 0 such that the following statement are true.
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1. o"(x) < c- f*(x) for all x.
2. sup|5n(x) —fl/n(x)| <c- f*(x)forall x.

n>1

Proof.

1 7T
1. Recall that o,(f;x) = — f f(x+ K, (t)dt. If n = 0, then it is clear that
TTJ-n

1 7T
|00(f;x)| < ﬂf_n |f(x+ t)|dt < f*(x).
Forn >1, let
= HK,,(t)dt L= HK,,(t)dt.
“ J;Sltlsl/n fle+ D) p ‘L/nﬁ|t|§n fe+ DK
Then,

o on+1
a, <

1/n 1 1/n
[ I+ p)a < B 2 [fe+pde < 2.
1/n n 2 =1/n

t
The inequality (©) holds by Propositionfi. Let I,(t) := f | flx+ u)| dube a function of t. Then
~t

by the definition of maximal function, I.(t)/t < 2f*(x). Now, it follows by Proposition @ again,

we have
8, < a n |f(x+t)|+|f(x—t)| _ 72 n @dt
"T2n+1) 1n 12 201 +1) Ju 2
7 (Lo L) " L) |
- 2(n+1)( 2 12 +2 o P df) (Integration by parts.)
n w7 L(t)
< |- 2) * X
_(2+n f(x)+n+1 yn B dt

T 72 1
<(5+m)F@+ = 2pe) [
‘(2 T )f(x)+n+1 f0 ] e
< (% + 3n2) ().
We conclude that |an( f; x)| < ¢ f*(x) for some positive c not depending on n.

2. The proof of this statement only need some minor modifications in the last statement
and in the proof of Theorem (. Hence we omit the details.

Theorem 44. Let f € [? and define

1 ”f(x+t)—f(x—t)dt
¢ 2 tan (t/2) '

) = sup |fe(x)l = sup

O<e<m O<e<m

Then

1FOl < e+ [I£]l,

In the following discussion, we will replace the symbol f®)(x) with g(x) to avoid misunderstandings.

for some c > 0.
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Proof. We claim that there is a constant A > 0 such that

fe@] <A+ (f@+ (@),

for all 0 < € < 7t. We first consider the case of € € (0,1/2]. Choose n € IN such that1/(n +1) <
€ < 1/n. Then, by inequality (F), we obtain

- - 1 2
F) - Fi@)] < 2 2 fo(w) < 26 ().
TC n

The second statement of Theorem @3 states that sup |5n(x) - fl/n(x)| < x - f*(x) (for some
nx1

constant k¥ > 0), thus we obtain

Fel) < (1 +2)f*(0) + 15, (0)]

< (k+2)f*(x) + sup [5,,(%)]
nelN

< (kK +2)f*(x) + 1 () (%)

We now consider the case of € € [1/2, t]. In this case, we have

- (x+1)
|f€(x)| = f1/25|t|3n =

2 tan (t/2)
Combining the above two inequalities proves the inequality we claimed, that is,

[fe@] < A+ (£ + (H'®).

dt <2 |[f(x + b)| dt < 4rf*().

0<|tiI<m

Now we have

FOlz < A (MU + [1£7]1,) < CoA (171l + I£1],) < 2C2A | f

where C, is the constant mentioned in Theorem f2. O

2/

Now we are going to prove the Calderén-Zygmund Lemma, which is useful in proving
the existence of conjugation in L.

Lemma 13 (Calderén-Zygmund decomposition). Let Q be a compact interval. Assume f €

LY(Q) and f > 0. Given a > f f. Then there exists a sequence of non-overlapping open
Q

1Ql

intervals {Qy};2; such that

1
1. a < — f < 2a, forall k.
1Ql Jo,

2. f(x) < a, for almost every x € Q \ | | Q.
1
3. Mlods- [ f.
Proof. For any interval I C Q, we said
1
Iis a type (i) interval if i ff >
I

1 .
lis a type (ii) interval if i f f2a
I
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Suppose Q = (a,b), then let

I,Sm) = (a +

Now we explain how we choose {Qy};2; from these I,((m). First, we select all type (i) interval in

%(b - a)) m=1,..,2"

{Iil), 152)}. Suppose the process has been executed h rounds and k intervals have been chosen.

Then we now choose all type (i) interval of the form I }(l":)l such that

h+lm|_|Q]_®

In other words, we can use the following way to describe the process. We first divide Q
equally into two open intervals Q) and Q,, where 1, r stands for left and right. In {Q;, Q,}, we
keep all type (i) intervals and divide all type (ii) intervals into two pieces, and repeat this
process. If Q is of type (i), then

1.
“ladJdo’ Tial IQlf f=

1
o1y =%

This inequality ensures that we can repeat the process that keep dividing type (ii) interval

If Q) is of type (ii), then

into two pieces. Thus we can gets a sequence of disjoint intervals {Qx};2; (possibly a finite
sequence).
Ifxe Q\| |Qrand x is not an endpoint of any Ih , ) then there are monotonically decreas-

ing type (ii) 1ntervals () (a(h) = a,(h) is a function of & and x.) such that ,ﬁ({l ) I (a(l)

I(a )

and shrinks down to x. By Lebesgue s differentiation theorem, we have

;}l_r)?o |I a(h)| f(a(h))f f&)

for almost every x € Q \ | | Q.
It now remains to show our choices of {Qy} meet the third requirement. Note that

1
> since — > . Thus,
2 ), Fre o N
J
~ | f=z2,1Qd-
aJg zk:
This proves the theorem. O

Remark. Given a non-negative function f € L'[-7, 7t]. Fix a > — f f. Apply Calderén-

Zygmund decomposition theorem (Theorem [[3) to f, we then obtam Ccountable disjoint in-
tervals {Q;} such that three requirements are met. We can define g € L![-m, 7] by

£(x) Jifxe[-mml\| | Q

g)=4 1 ,
|Qk| f ifx e Qk

35



We then define h € L[-7t, t] by h := f—g. Itis clear that g(x) < 2a for almost every x € [-7, 7t].
f = g+ his called the Calderén-Zygmund decomposition and the function g is often called
the “good” part of the function f and & is called the “bad” part.

Before proving the existence of conjugate function in L!, we shall prove another useful
lemma.

Lemma 14. Let F be a closed set in [-77, 7] and let
o(x) = dist(x, F) = inf|x - y| .
yeF

Then for all A > 0, the function

T 6/1
M, (x) ::f %d}/
ey

is finite for almost every x € F.

Proof. It is clear that
6/\
M (x) = f W) 4 where G = [, \ F.
G

Then

fMA(X)dx_ffGPC y|1+Adydx—f5/‘(y)[j; #}dy

dt 2 2m(G)
f(‘m (f tm)dy fG(SA(y) A

We can exchange the order of integration at the second equality because of Tonelli’s theorem.
This inequality shows that M, (x) is finite for almost every x € F (M, € L}(F)). O

We now can prove the following theorem.

Theorem 45 (The existence of conjugate function in L!). Let f € L}[-m, 7). Then the conjugate
of f exists. In other words, the limit lir% fe(x) exists for almost every x € [-m,mt]. Moreover, the
€—

Hilbert transform is weak (1,1), that is,

C 7T
[ix - |HF Q)| > al] < ;j:nf

for some constant C.

Proof. We first prove the existence of the conjugate function. Without loss of generality, as-
sume f > 0. We have defined the Calderén-Zygmund decomposition of f. Let f = ¢ + h be
the decomposition, where g is the good part of f and / is the bad part. Since g € L*[-n, ] C
[?[-7, 7t], it follows from Corollary [ that § exists. We now show that / exists.

Given € > 0. Let Q; := 2int(Qy). (For an open interval I = (r,s), we write 2I to denote
the interval ((3a + b)/2, (a + 3b)/2).) Also we use Q" to denote the open set U Qi and P* =
[-7, 1] \ Q*. We now claim that /i(x) exists for almost every x € P*.
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Let x € P* be fixed. Recall the definition of /1, we have
0 Jfte[-mm\ | |Q

1
- if

Hence h vanishes outside | Q. Let A, B be subset of IN defined by

h(t) =

A={ieIN:Q;N(x—€,x+€) =0}
B:={icIN:Q;N{x—¢€,x+¢€} # @}
Then

27 Fi(x) = f <|x_t|<nh(t)cot( )dt
= Ef h(t)cot( )dt+zf h(t)cot( )

i€A i€B
We now estimate the second term. If some Q) contains x + €, then € > dist(x, Q) > d;/2,
where dy is defined to be |Qy|. (If the inequality does not hold, then x ¢ P*.) Then

fQ h(t)COt(xT_t)|dt$ f o 20l <2 f (e dt = f (e + B dt.

By Lebesgue’s differentiation theorem,
h(t) cot( - )dt S b)) =0,as € — 0

k

Ok
for almost every x € P*.

Now we give the estimation of the first term. Let k € A. We also write d; = |Qy| and let
t; denote the midpoint of Q. Note that h(t)dt = 0. Therefore,

Qk
th(t)cot(x; )|dt fQ

k h(t) (cot (xT—t) — cot (x ; tk))| dt

sin ((t - tk)/2)
- f 0
Qx sin ((x - t)/2) sin ((x - tk)/Z)

k

4 0]
<3l sin (6= 172)] - fsin (e = 02

2d
o ML

dt

2|x
The inequality (¢) holds by [sin x| > # for all x € [-7t/2, /2] and the fact that

1 3
§|x—tk|S|X—f|S§|X—tk|- (6)
Observe that
1 1
f It dt < f - — [ flae< 2f F(Hdt <2104 —f F<4alQ.
Qk Qk Qx| Qk |Qxl Qk

Now let 6(t) = dist(t, P*). It is clear that O(t) > dy/2 for all t € Q. Summarizing the results
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obtained above, we have
80(772dk |Qk| < 16&712

fQ G-t~ -hP g,

Here we have used the inequality (B).

dt <

o(t)dt < 36am? f 5(t)

—t
h(t) cot (x—)
2 Qﬂx—ﬂ

k

By Lemma [[4, we have

o(t
lim 2 f |h(t) cot |dt < 36am? lim Zf | t| L | ( 1)f| dt < o
i X — X —

e—>0+ e—0*

for almost every x € P*. Thus hi(x) exists for almost every x € P*.
However, it is worth noting that the closed set P* might be larger when a becomes larger.
Therefore it now sulffices to show that

|P*| - 21 as a — oo,

Q1=|Jil< <2 -0
as @ — 09,

We now show that the Hilbert transform f + f is weak (1,1). It is clear that

It follows by the fact that

fx: [f(x)l > a} € {x: [3(x)] > /2} U {x : |h(x)| > a/2).
Firstly, we have

4 4 8 8
m({x1|§(X)|>0</2})5;f|§|2§;f|8|2$;f|3|35f|f|-

Now let S := {|¥| > a/2}. Then itis clear that S = (SNP)U (SN Q") (P*UQ" = [-7, 7t]). By the
requirements of {Qy},

2
msn Q) <m@) <2 Bl <= [f]

We have just shown that

sdt = 36am?M(x)

)| < 362 f o)

Qk |x - t|

for almost every x € P*. Thus, for almost every x € SN P~,

1
xe{P M(p) = 7502 }

In other words, we have S N P* C {p : M(p) > 1/727?} except for a zero set. We conclude that

IQI_Aaf

where A is the constant 1/727?. (The second inequality holds by Lemma [[4.) This completes
the proof. O

1
SNP)<—
mEnP) < -
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6 Fourier transform on IR”

Definition 46 (Fourier transform). Given f € L!. We define its Fourier transform ]? (&) by
£(&) = f e2mE) £(x)dx,
IRn
where (¢, x) is the standard inner product on R".

Proposition 5. The following statements are true.

1 f+g=f+3g
2. c?’ =c f, where c is a constant.

3. If f € L(R), then f is continuous.

Proof. The first two properties are trivial. To show f is continuous, we consider the difference

F(E+1) - FE)l
By the definition and the inequality |ei6 - 1| <0,

FE+h) - (&)l = | f]R f (x)e 2mie) (gm2miteh) — 1) dx
< fm ) |f ()| min {27 - |1 - |x], 2}dx

Given € > 0, there is M > 0 such that

f | f (x)| dx < e.
[x|>=M
This implies that
f | ()| min {272 - ] - ], 2}dbx < 2e.
|x|=M
Note that
[ Jf@lminter- -1, 2 < 2nM [ fGo)] - ildx < e
[x|<M [x|<M

when £ is small enough. Therefore, for small enough / > 0, we have

F(E +h) = F(E)l < 3e.
This completes the proof. O

Theorem 47 (Riemann-Lebesgue Theorem revisited). Let f € 12, then | f (&)l = 0as |&| — co.

Proof. Use the substitution x =y + £ 5 in the integration, then we obtain
él

L
floy= [ eredr= [ et .g.zf(wﬁ)dy,

Thus, we have

Froy - L -2mi(x, _ s
o= [ e i f(x+z|é|2))dx'
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By the continuity of L! functions, we conclude

fEI—0 as [ >0
This completes the proof. O

Remark. It is worth noting that the continuity of L” functions (Theorem P9) only holds for
functions in LP[-m, 1], however some slight modifications may apply to the original argu-
ments and made the theorem true for functions f € L/(IR).

Definition 48 (Convolution). Given two functions f and g. We define f * ¢ to be the function
fes@= | fwst-yuy.
Proposition 6.
1. frg=f-2
2. Let n € R". Define t,f(x) := f(x —1). Then
T, f(€) = e FHENf (&),

3. 2V f(&) = 1, £(£).
4. (D°f)(&) = 2mi&)*f(8).
5. (S2miE)Ef(E) = DYf(&).

Proof. We only prove the first statement. The second and the third statement can be seen from
direct calculation, and the fourth and fifth statement can be seen from performing integration
by parts on the integral. Note that

fro@= [ frs@eax= [ [ f)gec- ey
= ( fm ) f(y)e—Zni@ffS)dy) ( j}; ) glx - y)e—Zni(x—y/5>dx) = f(g) -3(8).

This proves the first assertion. O
Lemma 15. Let f(x) = ¢ Then f(&) = el
Proof. We shall only give the case of n = 1. By Proposition f, we have
(F(©) = (~2mix- £)(€) = (~2mixe ™€) = i (&)
= i2nig)f(£).

This implies that
(f) (&) = -2naf ().

Solving this differential equation gives us ]? (&) = ce ™, where ¢ € R is a constant. We could
obtain c = 1 by considering f(0). Similar arguments hold for general n € IN. O

We now could introduce the concept of the inverse Fourier transform. As the word
implies, we later shall show that this is the inverse of the Fourier transform.
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Definition 49 (inverse Fourier transform). Given f € L!. We define the inverse Fourier trans-
form f of f by

f= [ ememsez.

Theorem 50 (Fourier integrals theorem). Suppose f € L' and the Fourier transform f of f exists

in LY. Then ]? = f = f almost everywhere.
Before we prove this theorem, we shall prove some useful lemmas.

Lemma 16. Suppose f, ¢ € L! and the Fourier transforms f,§ of f,g exist. Then

[Fe= [ 12
Proof. It follows by

[ Fos@ac= [ | b fomg@ds= [ fogema
R" R J R R"
It is worth noting that the second equality holds by the Fubini’s Theorem. O

Lemma 17 (Minkowski’s inequality). Let1 < p < co. Suppose f : R" X R" — R is a measur-
able function, then
1/p

(Lo (Lot

Proof. We may assume f > 0. The left side to the power of p is

=1 ([ f(x,wdx)p w= ([, f(ny)dt)p_l ([, snta) v

Let F(y) = f F(t,y)dt. Thenl = f F(yy~'f(x, y)dydx by Tonelli’s Theorem. Applying
R” R"
Holder’s inequality, we obtain

Up

(-1

ISJ;(HWHWMQ (L;ﬂnwwﬁ dx

(r-Dip 1/p

= ( f F(y)pdy) ' f ( f(x,y)”dy) dx
R R" R

p (p-V)fp 1/p
=(L;(]mf@yma¢@) .J;(L;f@yymd dx.

1/p
This implies that I'# < f ( fx, y)pdy) dx, which proves the lemma. O
R \J R

Lemma 18. Let ¢ € L! such that f|g0(x)| dx = a. Suppose f € LF (1 <p < o), then

||f*(pt—af||p—>0 as t—0,

where @,(x) := t7"@(x/t). In other words, f * p, = af in LP.
% % ‘%
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Proof. Note that
Frot)-afe)= [ (FGr=y)~f0) pito)y
_ fIR (fe-m)-f0) @iz (z =y,

We now apply Minkowski’s inequality (Lemma [[7), then we can see that

1/p
If < ~afl], = (f]R I * 1) - af () dx)

RN
0 )
IRn
p p i
wa (fIR fx—t2) - F@[ (2| dx) dz

=[[euf =11, | lo@ldz
=a-|[rif - f = 0

We have used the fact that the translation is continuous in L7, that is,

fR (fe-t2) - f0) pla)iz

||th—f||—>0 as t—0

for any f € LP. In fact, we have proved this before, for more information, please refer to
Theorem P9. It is worth noting that some modifications of the proof need to be make since
the proof only shows the case of f € LP[-7, ], f € LF(IR") is not included. O

We now can give the proof of Theorem p0.
Proof of Theorem pU. Let t > 0 be a parameter and let x € IR” be fixed. Define

(&) = exp (2mi (x, &) ~ m? |€P).
Then

—_

B = | e e
= f exp (—27’(1' (&y—x)—nt? |5|Z)d5
Rn

2
gl ]

=t"exp [ ”
We have used the fact that f &) = a~2g- TP %, provided that f(x) = el Lt gi(x —vy) =

2
texp [MJ Then by Lemma [[§ and Lemma [[§, we have

J e (rite & - ntief)fieas = | f@gir-ypy — finL,
as t — 0. Using the Lebesgue’s dominated convergence theorem, we have

lim [ exp(2mi(x, &) - n? |€) f(£)dE = fR limexp (2 (x, &) - 72 ) F(E)dE = f).

t—0 JRn

42



We conclude that || ]? - flly = 0, therefore f (x) = f(x) for almost every x. O

Remark. Although this proof seems quite reasonable, there are some details I do not com-
pletely accept. We have shown that f =g, — fin L!, and f = g,(x) — f (x) for almost every x.
This does not implies that || j? — fll; = 0. However, this is the note I wrote in class, so I choose

to believe it.

The next theorem associate the Fourier transform and the Fourier series, this theorem is
known as Poisson’s summation formula.

Theorem 51 (Poisson’s summation formula). Given f € S(IR"). Then

Z f(x—k) — 2 f(k)eZTzi(k,x)

kez kez

for all x. In particular, if we plug in x = 0 to the formula, we then obtain
> fk) =¥ F®).
kezn kezn

We shall also prepare a lemma.

Lemma 19. If f € L}(R"), then Z f(x=k) converges almost everywhere on [0, 1]. Moreover,
kez"

if we let Pf(x) := E f(x —k), then Pf € L'[0,1] and
kez"

”Pf”Ll[O,l] = ||f||L1(]R”) .

Proof. We shall just prove that Pf is integrable, then the summation is finite almost every-
where. Also, we may assume that f > 0. Note that

fl Z f(x—k)dx = E folf(x—k)dxz Z j:+1f(x)dx=fw f(x)dx.

0 kezn kez" kez"
Now the lemma follows. [

Remark. In fact, Iremembered that this is a problem in the final exam of last semester. More-
over, if f € S(R") then Y, .., f(x — k) converges for almost everywhere.

Proof of Theorem p1. We apply Lemma [[9, we obtain a function Pf € L'[0,1]. We can compute
its Fourier series.

_ 1
Pflko) = f Y, e72mitkom) f(x — k)dx

0 kezn
—k+1

— E f e—2ni(k0,x+k>f(x)dx

kezn ¥ —k
_ f e 2iko ) F(x)dx = F(ko).
RTI

It now suffices to show that Z | f (k)] < oo. If this is true, then we can conclude that the
kezZ"
Fourier coefficients of

Pf and Y, flk)erik

kezn
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are the same, and thus two functions are equal, namely,

Y flr=k = Y flkemih,

kez kez

The claim that Z | f (k)| converges now follows by f € S(IR"). O
kezn

7 The discrete Fourier transform and the Roth’s Theorem

In this subsection, our main objective is to prove Roth’s theorem by discrete Fourier
transform.

Theorem 52 (Roth’s theorem). Let A C IN be a set of positive integers. If the density of A is greater

than Q. That is

#AN{1,2,..,
lim sup { nl =06>0.

n—00 n

Then A contains a three terms arithmetic progression. In other words, there are x,d € IN such that
{x,x+d,x+2d} C A.
History

In 1980, E. Szemerédi showed the following

Theorem 53 (Szemerédi’s theorem). Let A C IN be a set of positive integers with positive density.
Then for all k > 3, A contains a k-term arithmetic progression. In other words, there are x,d € IN
such that {x,x +d, ..., x + (k—1)d} C A.

This theorem has a lot of approaches. H. Fusterberg proves this theorem by using the
ergodic theory. T. Gowers proves the theorem by using the Fourier transform.
Math

Now we will work on the cyclic group Z,, := Z/nZ.. We shall now give some definitions.
Definition 54.

1. We write CZ» to denote all complex-valued functions f : Z,, — C.

1
2. The mean of f € C%» is defined by E, f = - Z f(x).

xeZ,

3. For any sets A C Z,, it induces a natural map A € C%» through

1, xeA
Ax) = .
0, x¢A

A
It is clear that E, A = ln—l

4. The exponential function e,(x) := e2Tix/n,
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Lemma 20 (Orthogonal property). If £ € Z,,, then

1 I, £€=0
— Z e, (x&) = .
" 0, £#0

Proof. 1f £ = 0, it is trivial. Now suppose & # 0, then there exists i # 0 such that ¢,(Eh) # 1.
Hence

LY G0 = Y e E) = ey ) ()

X€Zy xX€Zy, xX€Z,,

1
This shows — E e, (x&) =0. ]
n

xeZ,

Corollary. Given &, &’ € Z,,. Then

- 1, &=¢&
E, (en(0)e,(&7x)) = {0, cee
Similar to the function space, we also can define inner product on C%.
Definition 55 (inner product). Let f, g € CZ», we define the inner product of f and g by
(f8) =By (F(3(9) .

Definition 56 (Discrete Fourier transform). Given f € C%, we define

Fo=1 3 fu

xX€Zy,

to be the Fourier transform of f.
We now could list some properties.
Theorem 57 (Parseval’s formula). For any f € C%», we have
1/2
N 172 ~
(E1fF) = ( % If<a>|2] .
éeZy,

Proof. The square of right-hand side is equal to
2

Yrer=Y % D f(x)e,(Ex)

&eZ, &ez, x€Z,,
1 -
D> [Z f(x)en@x)]( D f<y>en<£y>)
&z, \xez, YeZy

1 —_—
= E Z Z Z f(x)f(y)en(g(y_x))

E€ly, xel.y yeZy,

1 [
== 2 5 f@f) X ey -x)

x€Z, yeZ, ez,
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23 ffm =l

xX€Zy,

We used Lemma 20 on (3).

Theorem 58. For any f,g € C%, we have
E,f()30) = Y FOFE).

¢z,

Proof. By direct computation,

Y f(ERE) = [ ) f(x)en<a:x>][ N @en@y)]
gezn

éeZy, xeZ, yeZ,

1
=— % 2 f080) X ey -v)

xeZ, yeZy, ez,

® 1 ~ Y f@R() = E, f()5().

er

We used Lemma 0 on (&).

Theorem 59 (Fourier integral theorem). For any f € C%», we have

@) =Y f(&)e (&)

ez,
Proof. The right-hand side is equal to

Z[ 2 f)e n(ng W)= Y Y e

cez, \ " yez, feZ, yeZ,

= f(y){ 3 & - y))]

yeZ, ¢z,

D r.

We used Lemma 20 on (%).

Definition 60 (convolution). Given f,g € C%. Define the convolution f * g by
frg) = E, fy)gx~y) = E, gW)f(x~y) =g~ f(x)

YeZy yeZy
Definition 61 (support).

1. Given f € C%». Then the support of f is the set supp(f) = {x € Z, : f(x) # 0}.
2. Giventwosets A,BC Z,,write A+ B={a+b:ac A beB}CZ,.

Here we can list some properties of convolution.
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Theorem 62. Given f,g € CZ, we have supp(f * g) C supp(f) + supp(g). In particular, if f = A
and g = B for some A, B C Z,, then supp(f *g) = supp(f) + supp(g).

Proof. Suppose x € supp(f *g), then there exists y € Z,, such that f(y)g(x —y) # 0. Therefore,

y € supp(f) and x — y € supp(g), and x € supp(f) + supp(g). This shows supp(f *g) C
supp(f) + supp(g). Now suppose f = A and ¢ = B for some A, B C Z,,. To show the second

statement, it suffices to prove A + B = supp(f) + supp(g) C supp(f *g). Let x € A + B, that s,
x=a+bforsomeae€ Aandb € B. Then

1
fr8x) = E, f(y)gx-y) 2 —Al@)B(b) =

ez,
we conclude that f * g(x) # 0. O
Theorem 63. Given f,g € C%n. The following statements are true:
L f+g=f-¢§
2 B (f5) = (5) ()
Proof. Both statements can be proved by direct computation.

1. It follows by

F(&)3(E) = [ D fx)e,(Ex) ][ D g(y)en(éy)]

xX€Zy yeZy,

& 1 —

2= Y Y [ -2

x€Z, zeZ,,

= E [ D, foglz- x)] n(&2)
zeZ xX€Zy,

= - 2 f *8@)eu(E2) = £ *8(E).
zeZn

We used the substitution z = x + y on (8).

2. The left-hand side is equal to

Y X fg-y) = [ Zﬂx)][ Zg(y)] (Enf) (Eng)-

1’12
xeZ, yeZ, xe”Z yez

Discussions above prove the theorem. O

We now can introduce the L? and ¢” norm on the function space C%x.

Definition 64 (L” and ¢ norm). Given f € C%. We define the L?(Z,)) norm of f by

1p
”f”Lp = [ ]En |f(x)|p] ’ for1l < p < 0
xX€Zy
11, = sup |f)]
xX€Zy
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We also can define the ¢F(Z,) norm of f by
1/p

”f“fp: Z|f(5)|p ,forl<p<oo

éez,

£l = sup |£(©)]
&€z,

We then have the following lemma.

Lemma 21. Let A C Z,,. Then the following statements are true:

=~ ~ |Al
_ A
zm@:mezﬁr

éez,

3. A&) = A=)

Proof.
1. By the definition, A(&) = Z A(x)e, (Ex) = 2 ¢,(&x). It follows that
" ez, n e
~ Al |A]
A < — =
= =z

and it is clear that A\(O) attains the maximum among all A\(cf).

2. By Parseval’s formula (Theorem p7), we have the right-hand side is equal to

1 E AR = IAI Al
er an
3. It follows by the definition.
Discussions above prove the theorem. O

To prove the Roth’s theorem on 3-term arithmetic progression, we shall convert the prob-
lem into an equivalent statement which is easier to handle. We first let

s(n) = max{#A : A C [1,n], A has no 3-term arithmetic progression}.

If we can show that

lim S(n) =0,

n—oo 11
then for any A C IN with positive density, there has to be some 3-term arithmetic progression.
If not, then
#ANA{L,2,..,n} s(n)

n n’

By the squeeze theorem, we obtain

- #AN{,2,..,n}
lim =0
n—oo n
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contradicting the assumption of A having 3-term arithmetic progression.

s(n
Lemma 22. Let s(n) be defined as above. Then the limit lim s(1) exists.

n—oo 1

Proof. We first claim that s(n) is sub-additive, that is, s(n + m) < s(n) + s(m). Suppose A C
[1,n + m] does not have a 3-term A.P. Then AN[1,n] <s(n)and AN[n+1,n+m] < s(m), thus
A < s(n) + s(m). Taking supremum among all possible A, we obtain s(n + m) < s(n) + s(m).

Now suppose lim sup s(n_n) =a > 0. Fixn € N. Givenk € N. Suppose k = gn+r for some

n—oo

0 < r < n (integer division). The sub-additive implies that s(k) < (g + 1)s(n). It now follows
that

sk) _ g+ Dsn) _ s(n)

k — qn T on
and
s(k) S(n)
= lim sup — .
k—oo n
This inequality shows that
k
hmmf@ > a = limsup — s
=00 n k—oo k
thus lim sup 1) = lim fM = lim s(n) O
H—00 n n—)oo n n—oo 1
s(n)
Now, in order to get contradiction, we assume that r}l_r)n - "¢ 0. Lete > 0. Then
there is N € IN large enough such that
c—e<?<c+e whenever n>N.
Fixn > N and let A C {1, ..., 2n} be a set with no 3-term A.P such that
Al
_— C p—
2n
Let Acven = A N 2IN, namely, the the set of all even numbers in A, then we claim
A
c—3€ < | evenl <c+e.
It is clear that
Acven| 00 _ .
n n
Since A — Aeyen is a subset of {1, 3, ..., 2n — 1}, thus
even| < s(n) <c+te
n n
therefore
A A-(A-A Al-|A-A
| evenl _ | ( even)| > | | | evenl > (2C —26) _ (C n €) — - 3e.
n n n

Now suppose A = {uq,uy, ..., u,} has r elements and Agyen, = {201, 20y, ..., 205} has s elements.
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Also we write A, to denote the set {vy, vy, ..., vs}. The following lemmas will do Fourier anal-

ysis on A as a subset of the cyclic group Z,,,.

Lemma 23. Continuing the notation above, the following statements are true:

1. A(0) = —

— 1 o
2. Ala) = o™ D e (21).
i=1

— 1 S —
3. Au(-a) = = D) g, (20).
2n &

4. Y A@AL(-ap =

o EZzn

Proof. The first three statements are corollaries of Lemma P1. We now show the fourth state-
ment.

Y Al@)A,(-a? = E Zeau (ZH)EQ—M ZW)ZQ-aUk(2n)

a€Zyy, anzH i=1

T S S
= 412 Z 2 Z m 2 eOé(ui—vj—vk)(zn)

i=1 j=1 k=1 | <" aez,,

= —#A, = —.
4n? 4n?
The equality (B) holds by Lemma P( and the equality (?) holds since

MZ'—U]'—Uk:O - Zui:20j+20k,
implying that {2v;, u;, 20} C A is a 3-term A.P. therefore u; —v; — v = O if and only if u; = 2v; =
ZZ)k S Aeven' ]
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