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ABSTRACT

這份筆記主要是在記錄分析二這個學期的上課內容，前半部分參考 Pugh所寫的參
考書 [2]以及 Apostol所寫的書 [1]，後半部分則是參考沈俊嚴老師的板書。

This note is mainly to record the content of this semester’s class in Analysis II. The
first half is based on Pugh’s book [2] and some from Apostol’s book [1], and the second
half is based on Mr. Shen’s lecture notes. We will not cover the content taught in the last
semester.
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1 The 𝐿2 Space and the Orthogonal Basis
In this subsection, we will study the space 𝐿2[𝑎, 𝑏]. The space is defined as the following

𝐿2[𝑎, 𝑏] = 􏿻𝑓 ∶ [𝑎, 𝑏] → ℝ ∣ 𝑓 is measurable and 􏾙|𝑓|
2
< ∞􏿾 .

Recall in the last semester, we have define the concept of a normed space.

Definition 1 (normed space). A normed space is a vector space 𝑋 with norm ‖⋅‖, satisfying
these three properties:

1. ‖𝑥‖ ≥ 0 for all 𝑥 ∈ 𝑋 , and ‖𝑥‖ = 0 if and only if 𝑥 = 0.

2. ‖𝛼𝑥‖ = |𝛼| ⋅ ‖𝑥‖ for all 𝛼 ∈ ℝ and 𝑥 ∈ 𝑋.

3. 􏿎𝑥 + 𝑦􏿎 ≤ ‖𝑥‖ + 􏿎𝑦􏿎 for all 𝑥, 𝑦 ∈ 𝑋.

Now consider the norm on 𝐿2[𝑎, 𝑏] defined by

􏿎𝑓􏿎 = 􏿵􏾙 |𝑓|
2􏿸
1/2
.

It is easy to see that 􏿎𝛼𝑓􏿎 = |𝛼| ⋅ 􏿎𝑓􏿎. Also note that 􏿎𝑓􏿎 = 0 if and only if 𝑓 = 0 almost
everywhere. To see the third condition, we consider the Cauchy-Schwartz inequality:

􏵶􏾙
𝑏

𝑎
𝑓𝑔􏵶 ≤ 􏾙

𝑏

𝑎
|𝑓𝑔| ≤ 􏿶􏾙

𝑏

𝑎
|𝑓|

2
􏿹
1/2

􏿶􏾙
𝑏

𝑎
|𝑔|

2
􏿹
1/2

.

The inequality on the left is trivial. For the inequality on the right side, we might assume
that 𝑓, 𝑔 ≥ 0. Then for all 𝑡 ∈ ℝ we have

(𝑡𝑓 + 𝑔)2 ≥ 0 ⟹ 𝑡2𝑓2 + 2𝑡𝑓𝑔 + 𝑔2 ≥ 0

⟹ 𝑡2􏾙𝑓2 + 2𝑡􏾙𝑓𝑔 +􏾙𝑔2 ≥ 0

⟹ 􏿵2􏾙𝑓𝑔􏿸
2
≤ 4 􏿵􏾙𝑓2􏿸 􏿵􏾙𝑔2􏿸

⟹ 􏾙𝑓𝑔 ≤ 􏿵􏾙𝑓2􏿸
1/2
􏿵􏾙𝑔2􏿸

1/2

Hence,
􏿎𝑓 + 𝑔􏿎

2
= 􏾙 |𝑓 + 𝑔|

2
= 􏾙𝑓2 + 2􏾙𝑓𝑔 +􏾙𝑔2

≤ 􏾙𝑓2 + 2 􏿵􏾙𝑓2􏿸
1/2
􏿵􏾙𝑔2􏿸

1/2
+􏾙𝑔2 = (􏿎𝑓􏿎 + 􏿎𝑔􏿎)2

This gives the third condition of the norm. We conclude that 𝐿2[𝑎, 𝑏] is a normed space. In
fact, it is a Banach space.

Theorem 2. 𝐿2[𝑎, 𝑏] equipped with the norm defined above is a Banach space.

We shall recall that a Banach space is a complete normed space. That is, every Cauchy
sequence is converging with respect to the norm. To prove this theorem, we shall introduce
some useful concepts.

2



Definition 3. Let 𝑋 be a normed space. Given a sequence of elements {𝑓𝑛}. We say 𝑓𝑛 is
summable to 𝑠 ∈ 𝑋 if

𝑠𝑛 → 𝑥 where 𝑠𝑛 =
𝑛
􏾜
𝑘=1

𝑓𝑘.

We say {𝑓𝑛} is summable if
∞
􏾜
𝑘=1

􏿎𝑓𝑘􏿎 < ∞.

Then we have the following lemma.

Lemma 1. A normed space 𝑋 is complete if and only if every summable {𝑓𝑛} is summable to
some 𝑠 ∈ 𝑋.

Proof. First suppose 𝑋 is complete. Given {𝑓𝑛} with ∑􏿎𝑓𝑘􏿎 = 𝑀 < ∞. Fix 𝜖 > 0, there exists
𝑁 ∈ ℕ such that

∞
􏾜
𝑘=𝑛

􏿎𝑓𝑘􏿎 < 𝜖 whenever 𝑛 ≥ 𝑁.

Then we have

‖𝑠𝑛 − 𝑠𝑚‖ ≤
𝑚
􏾜
𝑘=𝑛+1

􏿎𝑓𝑘􏿎 < 𝜖 whenever 𝑚 > 𝑛 ≤ 𝑁.

We conclude that {𝑠𝑛} is Cauchy, therefore 𝑠𝑛 → 𝑠 for some 𝑠 ∈ 𝑋.
Conversely, suppose every summable {𝑓𝑛} summable to some 𝑠 ∈ 𝑋. Given a Cauchy

sequence {𝑓𝑛}. For all 𝑘 ∈ ℕ there exists 𝑛𝑘 ∈ ℕ such that 􏿎𝑓𝑛 − 𝑓𝑚􏿎 < 2−𝑘, whenever 𝑛,𝑚 ≥ 𝑛𝑘.
We may assume that 𝑛𝑘+1 > 𝑛𝑘 for all 𝑘 ∈ ℕ. We now let

𝑔1 = 𝑓𝑛1 and 𝑔𝑘 = 𝑓𝑛𝑘 − 𝑓𝑛𝑘−1 for all 𝑘 ≥ 2.

It is easy to see that
𝑛
􏾜
𝑘=1

𝑔𝑘 = 𝑓𝑛𝑘 and
𝑛
􏾜
𝑘=1

􏿎𝑔𝑘􏿎 ≤
𝑛
􏾜
𝑘=1

2−𝑘 ≤ 1.

Thus it follows from the assumption that ∑𝑔𝑘 converges. That is, 𝑓𝑛𝑘 → 𝑓 for some 𝑓 ∈
𝑋. It remains to show 𝑓𝑛 → 𝑓, which could be derived from the definition of the Cauchy
sequence.

We now could give the proof of Theorem 2.
Proof of Theorem 2. By the Lemma 1, it suffices to show every summable {𝑓𝑛} ⊂ 𝐿2[𝑎, 𝑏] is
summable to some 𝑡 ∈ 𝐿2[𝑎, 𝑏]. Given a summable sequence {𝑓𝑛} (∑􏿎𝑓𝑘􏿎 ≤ 𝑀 < ∞) in
𝐿2[𝑎, 𝑏]. Set 𝑠𝑛 = ∑ |𝑓𝑘|, then

‖𝑠𝑛‖ =
􏿑
􏿑

𝑛
􏾜
𝑘=1

|𝑓𝑘|
􏿑
􏿑
≤

𝑛
􏾜
𝑘=1

􏿎𝑓𝑘􏿎 ≤ 𝑀 < ∞

Since {𝑠𝑛(𝑥)} is increasing for all 𝑥 ∈ [𝑎, 𝑏]. The limit

𝑔(𝑥) = lim
𝑛→∞

𝑠𝑛(𝑥)
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exists (∞ is allowed). The Fatou’s Lemma asserts that

􏾙𝑔2 = 􏾙 lim 𝑠2𝑛 ≤ lim inf􏾙𝑠2𝑛 ≤ 𝑀2 < ∞.

Hence 𝑔 is finite almost everywhere. Let

𝑓(𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑔(𝑥), if 𝑔(𝑥) < ∞

0, otherwise
.

Then 𝑠𝑛 pointwise converges to 𝑓 almost everywhere. Now consider the inequality

|𝑠𝑛(𝑥) − 𝑓(𝑥)|
2
≤ 2(𝑠2𝑛(𝑥) + 𝑓2(𝑥)) ≤ 4𝑓2(𝑥)

holds for almost every 𝑥. The Dominated Convergence Theorem asserts that

lim
𝑛→∞

􏾙|𝑠𝑛 − 𝑓|
2
= 􏾙 lim |𝑠𝑛 − 𝑓|

2
= 􏾙0 = 0.

Hence 𝑠𝑛 → 𝑓 in the 𝐿2 norm. This proves the case of 𝑓 ≥ 0. In general, we may consider
𝑓 = 𝑓+ − 𝑓−. □

Theorem 4. 𝐿2[𝑎, 𝑏] is separable. That is, there is a countable dense subset of 𝐿2[𝑎, 𝑏].

We first prove the following:

Lemma 2. 𝐶[𝑎, 𝑏] with the 𝐿2 norm is dense in 𝐿2[𝑎, 𝑏].

Proof. We first prove that every characteristic function of a compact set can be approximated
by a sequence of continuous function. Let a closed set𝐴 ⊂ [𝑎, 𝑏] be given. Let 𝑡(𝑥) = inf

𝑦∈𝐴
|𝑥 − 𝑦|

be a continuous function (continuity follows from the exercise last semester.) Consider the
function

𝑔𝑛(𝑥) =
1

1 + 𝑛 ⋅ 𝑡(𝑥)
It is easy to see that 𝑔𝑛 pointwise converges to 𝜒𝐴. Note that

|𝑔𝑛(𝑥) − 𝜒𝐴(𝑥)|
2
≤ 4

hence it follows by the Dominated Convergence Theorem that

lim
𝑛→∞

􏾙|𝑔𝑛 − 𝜒𝐴|
2
= 􏾙 lim

𝑛→∞
|𝑔𝑛 − 𝜒𝐴|

2
= 0

This implies that the 𝜒𝐴 can be approximated by continuous function. We now show that
this is true for characteristic function of a measurable set. Let 𝐸 ⊂ [𝑎, 𝑏] bemeasurable. Given
𝜖 > 0 there is a compact set 𝐹 ⊂ 𝐸 such that 𝑚(𝐸) ≤ 𝑚(𝐹) + 𝜖. Then ‖𝜒𝐸 − 𝜒𝐹‖ < 𝜖. From the
discussion above, we conclude that there is a continuous function 𝑡 such that ‖𝜒𝐹 − 𝑡‖ < 𝜖.
Thus, ‖𝜒𝐸 − 𝑡‖ < 2𝜖. Now, for a measurable function 𝑓 ∈ 𝐿2[𝑎, 𝑏] (𝑓 ≥ 0), there are finitely
many measurable sets 𝐸𝑖 and positive real numbers 𝑎𝑖 such that

𝑛
􏾜
𝑖=1
𝑎𝑖𝜒𝐸𝑖 ≤ 𝑓 and

􏿑
􏿑

𝑛
􏾜
𝑖=1
𝑎𝑖𝜒𝐸𝑖 − 𝑓

􏿑
􏿑
< 𝜖.
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This shows that there is some continuous function 𝑡 such that 􏿎𝑡 − 𝑓􏿎 < 2𝜖. This complete the
proof.

Lemma 3.

1. The set of all real polynomials ℝ[𝑥] is dense in 𝐶[𝑎, 𝑏] with respect to the 𝐿2 norm.

2. ℚ[𝑥] is countable and dense in ℝ[𝑥]with respect to the 𝐿2 norm.

Proof. The first one immediately follows from the Stone-Weierstrass Theorem. The second
one is trivial.

Proof of Theorem 4. This is a corollary of Lemma 2 and Lemma 3. □
We now shall study the inner product structure on the 𝐿2[𝑎, 𝑏] space. Observe the fol-

lowing property: If we are given two functions 𝑓, 𝑔 ∈ 𝐿2[𝑎, 𝑏], then we have

􏾙|𝑓𝑔| ≤ 􏿵􏾙𝑓2􏿸
1/2
􏿵􏾙𝑔2􏿸

1/2
< ∞.

Hence we can define the inner product on 𝐿2. We write 􏾉𝑓, 𝑔􏽼 = inf 𝑓𝑔 to denote the inner
product of 𝑓 and 𝑔. Here we recall the definition of inner products.

Definition 5. Let 𝑉 be a vector space over 𝐹. Then inner product ⟨−, −⟩ ∶ 𝑉 × 𝑉 → 𝐹 is a
function satisfying the following property: (we might assume 𝐹 = ℝ here)

1. 􏾉𝑓, 𝑔􏽼 = 􏾉𝑔, 𝑓􏽼 for all 𝑓, 𝑔 ∈ 𝑉.

2. 􏾉𝑓1 + 𝑓2, 𝑔􏽼 = 􏾉𝑓1, 𝑔􏽼 + 􏾉𝑓2, 𝑔􏽼 for all 𝑓1, 𝑓2, 𝑔 ∈ 𝑉.

3. 􏾉𝑐𝑓, 𝑔􏽼 = 𝑐 􏾉𝑓, 𝑔􏽼, for all 𝑓, 𝑔 ∈ 𝑉 and 𝑐 ∈ ℝ.

4. 􏾉𝑓, 𝑓􏽼 = 􏿎𝑓􏿎
2
≥ 0 for all 𝑓 ∈ 𝑉, and 􏿎𝑓􏿎 = 0 if and only if 𝑓 = 0.

The inner product structure help us to define the concept of orthogonal.

Definition 6 (orthogonal). Given 𝑓, 𝑔 ∈ 𝑉, we say 𝑓 and 𝑔 is orthogonal if 􏾉𝑓, 𝑔􏽼 = 0. A set
𝑆 ⊂ 𝑉 ⧵ {0} is orthogonal if 􏾉𝑓, 𝑔􏽼 = 0 for all 𝑓, 𝑔 ∈ 𝑆. A set 𝑆 ⊂ 𝑉 ⧵ {0} is orthonormal if it is
orthogonal and 􏿎𝑓􏿎 = 1 for all 𝑓 ∈ 𝑆.

Theorem 7. Suppose {𝜙𝛼}𝛼∈Λ is orthogonal in 𝐿2. Then it (Λ) is at most countable.

Proof. Without loss of generality, {𝜙𝛼} is orthonormal. If 𝜙𝛼 ≠ 𝜙𝛽, then we have

􏾊𝜙𝛼 − 𝜙𝛽, 𝜙𝛼 − 𝜙𝛽􏽽 = 􏾉𝜙𝛼, 𝜙𝛼􏽼 + 􏾊𝜙𝛽, 𝜙𝛽􏽽 = 2.

This shows that {𝐵(𝜙𝛼; 1) ∶ 𝛼 ∈ Λ} is a set of disjoint open balls. Recall that in Theorem 4,
we have shown that there is a countable dense subset 𝑃 of 𝐿2. Thus, every open ball 𝐵(𝜙𝛼; 1)
contains a points 𝑥𝛼 ∈ 𝑃. {𝑥𝛼} is at most countable therefore Λ is countable.

Definition 8 (linear independent). Given a finite set {𝜑1, … , 𝜑𝑛} ⊂ 𝑉, we say it is linear inde-
pendent if

𝑛
􏾜
𝑖=1
𝑎𝑖𝜑𝑖 = 0 ⟹ 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛 = 0.
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For an infinite set {𝜑𝛼}𝛼∈Λ ⊂ 𝑉, we say it is linear independent if all of its finite subsets are
linear independent.

Then we have the following.

Lemma 4. If {𝜙𝛼}𝛼∈Λ ⊂ 𝑉 is orthogonal then it is linear independent.

Proof. It suffices to show that Λ is a finite set. Suppose
𝑛
􏾜
𝑖=1
𝑎𝑖𝜙𝑖 = 0

for some 𝑎𝑖 ∈ ℝ. Then

0 = 􏾋
𝑛
􏾜
𝑖=1
𝑎𝑖𝜙𝑖, 𝜙𝑖􏽾 = 􏾉𝑎𝑖𝜙𝑖, 𝜙𝑖􏽼 = 𝑎𝑖 􏿎𝜙𝑖􏿎

2
,

this indicates that 𝑎𝑖 = 0 for all 𝑖.

Theorem 9. Gram-Schmidt process Let {𝜑𝑖}∞𝑖=1 be linear independent. Then there exist an orthonor-
mal set {𝜙𝑖}∞𝑖=1 such that

spanℝ{𝜙1, … , 𝜙𝑘} = spanℝ{𝜑1, … , 𝜑𝑘}.

We will not give a proof here, see also my linear algebra note for more details. We now
give the definition of basis in infinite dimensional space.

Definition 10.

1. We say an orthogonal set {𝜙𝛼}𝛼∈Λ ⊂ 𝐿2[𝑎, 𝑏] is maximal (complete), if

􏾉𝑓, 𝜙𝛼􏽼 = 0, for all 𝛼 ∈ Λ ⟹ 𝑓 = 0.

2. Given a finite set {𝜙1, … , 𝜙𝑛}. We write

spanℝ{𝜙1, … , 𝜙𝑛} ∶=

⎧⎪⎪⎨
⎪⎪⎩

𝑛
􏾜
𝑖=1
𝑎𝑖𝜙𝑖 ∶ 𝑎𝑖 ∈ ℝ

⎫⎪⎪⎬
⎪⎪⎭ .

For a infinite set {𝜙𝛼}𝛼∈Λ, we write

spanℝ{𝜙𝛼}𝛼∈Λ = 􏾌
𝐹⊂Λ, |𝐹|<∞

spanℝ{𝜙𝛼}𝛼∈𝐹.

3. We say {𝜙𝑖}∞𝑖=1 is a basis in 𝐿2[𝑎, 𝑏] if it is dense in 𝐿2[𝑎, 𝑏]. That is, for all 𝑓 ∈ 𝐿2 and 𝜖 > 0,
there are {𝑎𝑖}𝑛𝑖=1 and {𝜙𝑖}𝑛𝑖=1 such that

􏿑
􏿑

𝑛
􏾜
𝑖=1
𝑎𝑖𝜙𝑖 − 𝑓

􏿑
􏿑
< 𝜖.

Note that 𝐿2 has an orthogonal basis. {𝑥𝑛}∞𝑛=0 ⊂ ℝ[𝑥] generates 𝐿2 and then apply Gram-
Schmidt process.

Lemma 5. Suppose {𝜙𝑖} is an orthogonal basis. {𝜙𝑖} is a complete (maximal) orthogonal set.
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Proof. Suppose 􏾉𝑓, 𝜙𝑖􏽼 = 0 for all 𝑖 ∈ ℕ. Since {𝜙𝑖} is a basis, given 𝜖 > 0 there exists {𝑎𝑖}𝑛𝑖=1
such that

􏿑
􏿑

𝑛
􏾜
𝑖=1
𝑎𝑖𝜙𝑖 − 𝑓

􏿑
􏿑
< 𝜖.

Then we have

𝜖2 > 􏾋
𝑛
􏾜
𝑖=1
𝑎𝑖𝜙𝑖 − 𝑓,

𝑛
􏾜
𝑖=1
𝑎𝑖𝜙𝑖 − 𝑓􏽾 =

𝑛
􏾜
𝑖=1
𝑎2𝑖 􏿎𝜙𝑖􏿎

2
+ 􏿎𝑓􏿎

2
≥ 􏿎𝑓􏿎

2
.

This shows 􏿎𝑓􏿎 < 𝜖 for any given 𝜖 > 0 hence 􏿎𝑓􏿎 = 0. This completes the proof.

2 Fourier Series
In the subsection, we introduce the Fourier series on the 𝐿2 space.

Definition 11. Suppose {𝜙𝑖}∞𝑖=1 is an orthonormal set in 𝐿2 space. Given 𝑓 ∈ 𝐿2. Then

𝑐𝑘 = 􏾙𝑓𝜙𝑘

is called the Fourier coefficient, and

𝑠(𝑓) =
∞
􏾜
𝑘=1

𝑐𝑘𝜙𝑘

is called the Fourier series.

Theorem 12. Given an orthonormal set {𝜙𝑖}𝑁𝑖=1, then for all (𝛾𝑖)𝑁𝑖=1 we have

􏿑
􏿑

𝑁
􏾜
𝑖=1
𝑐𝑖𝜙𝑖 − 𝑓

􏿑
􏿑
2

≤
􏿑
􏿑

𝑁
􏾜
𝑖=1
𝛾𝑖𝜙𝑖 − 𝑓

􏿑
􏿑
2

.

That is, among all choice of (𝛾𝑖), (𝑐𝑖) gives the best approximation.

Proof. It follows by

􏿑
􏿑
􏾜
𝑖
𝛾𝑖𝜙𝑖 − 𝑓

􏿑
􏿑

2

= 􏾋􏾜
𝑖
𝛾𝑖𝜙𝑖 − 𝑓,􏾜

𝑖
𝛾𝑖𝜙𝑖 − 𝑓􏽾 = 􏾜

𝑖
𝛾2𝑖 + 􏿎𝑓􏿎

2
− 2􏾜

𝑖
𝛾𝑖𝑐𝑖

=􏾜
𝑖
(𝛾𝑖 − 𝑐𝑖)2 + 􏿎𝑓􏿎

2
−􏾜

𝑖
𝑐2𝑖 .

This completes the proof.

Corollary. Let {𝜙𝑖}∞𝑖=1 be an orthonormal set.

1. For any 𝜙1, 𝜙2, … , 𝜙𝑁 ,∑𝑐𝑖𝜙𝑖 has the minimum distance to 𝑓.

2. ∑∞
𝑖=1 |𝑐𝑖|

2 ≤ 􏿎𝑓􏿎
2
. This is the so-called Bessel’s inequality.
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Proof. We shall only prove the second statement. We have

􏿑
􏿑

𝑁
􏾜
𝑖=1
𝑐𝑖𝜙𝑖 − 𝑓

􏿑
􏿑

2

= 􏿎𝑓􏿎
2
−

𝑁
􏾜
𝑖=1
|𝑐𝑖|

2 ≥ 0.

for all 𝑁. Taking 𝑁 → ∞ gives the desired result.

Definition 13. A sequence of numbers (𝑐𝑖)∞𝑖=1 is said to be in ℓ2 if
∞
􏾜
𝑖=1
|𝑐𝑖|

2 < ∞.

Then we have the following theorem.

Theorem 14. Let {𝜙𝑖} be a complete (maximal) orthonormal set. If 𝑐𝑘(𝑓) = 𝑐𝑘(𝑔) for all 𝑘 ∈ ℕ. Then
𝑓 = 𝑔.

Proof. We have

􏾙(𝑓 − 𝑔)𝜙𝑘 = 0 for all 𝑘 ∈ ℕ.
That is 𝑓 − 𝑔 is orthogonal to all 𝜙𝑘. We conclude that 𝑓 = 𝑔.

Theorem 15. Suppose (𝑐𝑖)∞𝑖=1 ∈ ℓ2. Given an orthonormal set {𝜙𝑖}∞𝑖=1 in 𝐿2. Then there is a function
𝑓 ∈ 𝐿2 such that

𝑐𝑘 = 􏾙𝑓𝜙𝑘 and
∞
􏾜
𝑖=1
|𝑐𝑖|

2 = 􏿎𝑓􏿎
2
.

Proof. Let 𝑡𝑛 =
𝑛
􏾜
𝑖=1
𝑐𝑖𝜙𝑖 ∈ 𝐿2. We claim (𝑡𝑛)∞𝑛=1 is a Cauchy sequence in 𝐿2. Given 𝜖 > 0. There

exists an 𝑁 ∈ ℕ such that
∞
􏾜
𝑖=𝑘
|𝑐𝑖|

2 < 𝜖 whenever 𝑘 ≥ 𝑁.

Now consider

‖𝑡𝑛 − 𝑡𝑚‖
2 =

􏿑
􏿑

𝑚
􏾜
𝑖=𝑛+1

𝑐𝑖𝜙𝑖
􏿑
􏿑

2

=
𝑚
􏾜
𝑖=𝑛+1

|𝑐𝑖|
2 < 𝜖 if 𝑚 > 𝑛 ≥ 𝑁.

Hence (𝑡𝑛) is a Cauchy sequence in 𝐿2. There is a function 𝑓 ∈ 𝐿2 such that 𝑡𝑛 → 𝑓 in 𝐿2 norm.
Finally, we have

|􏾙𝑓𝜙𝑘 − 𝑐𝑘| = |􏾙𝑓𝜙𝑘 −􏾙𝑡𝑛𝜙𝑘| = |􏾙(𝑓 − 𝑡𝑛)𝜙𝑘| ≤ 􏿎𝑓 − 𝑡𝑛􏿎 ⋅ 1 → 0.

Hence􏾙𝑓𝜙𝑘 = 𝑐𝑘. The second statement follows from

􏿎𝑓􏿎
2
−

𝑛
􏾜
𝑖=1
|𝑐𝑖|

2 = 􏾉𝑡𝑛 − 𝑓, 𝑡𝑛 − 𝑓􏽼 = 􏿎𝑡𝑛 − 𝑓􏿎
2
→ 0 as 𝑛 → ∞.

This completes the proof.
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Definition 16. Let {𝜙𝑖}∞𝑖=1 be an orthonormal set. We said 𝑓 ∈ 𝐿2 satisfies Parseval’s Formula
if

∞
􏾜
𝑖=1
|𝑐𝑖|

2 = 􏿎𝑓􏿎
2
.

We now have the following.

Theorem 17. Given an orthonormal set {𝜙𝑖}∞𝑖=1. Then it is complete if and only if 𝑓 satisfies the
Parseval’s formula for all 𝑓 ∈ 𝐿2.

Proof. Suppose 𝑓 satisfies the Parseval’s formula for all 𝑓 ∈ 𝐿2. If there is a 𝑓 ∈ 𝐿2, such that
􏾉𝑓, 𝜙𝑖􏽼 = 0 for all 𝑖 ∈ ℕ. Then 􏿎𝑓􏿎

2
= 0. Hence {𝜙𝑖} is a complete (maximal) orthonormal set.

Now suppose that {𝜙𝑖} is complete (maximal). Given 𝑓 ∈ 𝐿2. By Bessel’s inequality, we have
𝑛
􏾜
𝑖=1
|𝑐𝑖|

2 ≤ 􏿎𝑓􏿎
2
< ∞.

We now apply Theorem 15, there is a function 𝑔 ∈ 𝐿2 such that

𝑐𝑘(𝑔) = 𝑐𝑘 = 𝑐𝑘(𝑓) and
∞
􏾜
𝑖=1
|𝑐𝑘(𝑔)|

2
= 􏿎𝑔􏿎

2
.

By Theorem 14, we conclude that 𝑓 = 𝑔. This gives the desired result.

Theorem 18. 𝐿2[𝑎, 𝑏] is isometric to ℓ2 and 𝐿2[𝑎, 𝑏] is isometric to 𝐿2[𝑐, 𝑑].

This is just a corollary of discussions above.

3 Fourier series on [𝑎, 𝑏]
In this subsection, we shall now study the concrete Fourier series. That is, wewill replace

the orthonormal set {𝜙𝑖}with the trigonometric function {cos(𝑛𝑥), sin(𝑛𝑥)}∞𝑛=0 or {exp (𝑖𝑘𝑥)}∞𝑘=−∞.
Let 𝑓 ∶ ℝ → ℝ be a periodic function with period 2𝜋. Define its Fourier series be

𝑎0
2 +

∞
􏾜
𝑘=1

𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin (𝑘𝑥),

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑎𝑘 =
1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡) cos (𝑘𝑡)𝑑𝑡

𝑏𝑘 =
1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡) sin (𝑘𝑡)𝑑𝑡

.

We often use the complex notation
∞
􏾜
𝑘=−∞

𝑐𝑘𝑒𝑖𝑘𝑥.

In general, we say 𝑃(𝑡) is a trigonometric polynomial of degree 𝑛 if

𝑃(𝑡) =
𝑛
􏾜
𝑘=−𝑛

𝑐𝑘𝑒𝑖𝑘𝑡, where |𝑐𝑛| + |𝑐−𝑛| ≠ 0.
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We have the following important property:

1
2𝜋 􏾙

𝜋

−𝜋
𝑒𝑖𝑚𝑥𝑑𝑥 =

⎧⎪⎪⎨
⎪⎪⎩
0, if 𝑚 ≠ 0
1, if 𝑚 = 0

.

This gives us an opportunity to generalize it and allow us do Fourier analysis on groups. We
will also study Fourier series on 𝐿𝑝 spaces.

Lemma 6. Let 𝑠𝑛(𝑥) = ∑
𝑛
𝑘=−𝑛 𝑐𝑘𝑒𝑖𝑘𝑥 converge to 𝑓 ∈ 𝐿1 in 𝐿1 norm. Then

𝑐𝑘 = 𝑐𝑘(𝑓) =
1
2𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝑒−𝑖𝑘𝑡𝑑𝑡.

Proof. Since 𝑠𝑛 → 𝑓 in 𝐿1 norm. We have􏾙|𝑓 − 𝑠𝑛| → 0. We have

𝑐𝑘(𝑓) =
1
2𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝑒−𝑖𝑘𝑡𝑑𝑡 = 1

2𝜋 􏿶􏾙
𝜋

−𝜋
(𝑓 − 𝑠𝑛)𝑒−𝑖𝑘𝑡𝑑𝑡 +􏾙

𝜋

−𝜋
𝑠𝑛(𝑡)𝑒−𝑖𝑘𝑡𝑑𝑡􏿹

= 1
2𝜋 􏾙

𝜋

−𝜋
(𝑓 − 𝑠𝑛)𝑒−𝑖𝑘𝑡𝑑𝑡 + 𝑐𝑘.

Note that
|􏾙

𝜋

−𝜋
(𝑓 − 𝑠𝑛)𝑒−𝑖𝑘𝑡𝑑𝑡| ≤ |􏾙

𝜋

−𝜋
(𝑓 − 𝑠𝑛)| → 0 as 𝑛 → ∞.

This completes the proof. This theorem establishes a necessary condition for a trigonometric
series to converge.

We now are going to introduce an useful theoremwhich is known as Riemann-Lebesgue
Theorem.

Theorem 19 (Riemann-Lebesgue’s Theorem). If 𝑓 ∈ 𝐿1, then |𝑐𝑘| → 0 as 𝑘 → ∞.

Proof. We shall use a fact (which will be proved later) that trigonometric series are dense in
𝐿1. Given 𝑓 ∈ 𝐿1 and 𝜖 > 0 there exists a

𝑃(𝑡) =
𝑁
􏾜
𝑘=−𝑁

𝑐𝑘𝑒𝑖𝑘𝑡

such that
􏿎𝑓 − 𝑃􏿎1 < 𝜖.

When 𝑛 > 𝑁, we have

𝑐𝑛 =
1
2𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝑒−𝑖𝑛𝑡𝑑𝑡 = 1

2𝜋 􏿶􏾙
𝜋

−𝜋
(𝑓 − 𝑃)𝑒−𝑖𝑛𝑡𝑑𝑡 +􏾙

𝜋

−𝜋
𝑃 ⋅ 𝑒−𝑖𝑛𝑡𝑑𝑡􏿹

= 1
2𝜋 􏾙

𝜋

−𝜋
(𝑓 − 𝑃)𝑒−𝑖𝑛𝑡𝑑𝑡 → 0 as 𝑛 → ∞

This proves the desired result.

We now can compute and simplify the Fourier series into simpler form.

𝑠𝑛(𝑥) =
𝑛
􏾜
𝑘=−𝑛

𝑐𝑘𝑒𝑖𝑘𝑥 =
𝑛
􏾜
𝑘=−𝑛

1
2𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡) ⋅ 𝑒𝑖𝑘(𝑥−𝑡)𝑑𝑡 = 1

𝜋 􏾙
𝜋

−𝜋
𝑓(𝑡)

⎛
⎜⎜⎜⎜⎜⎝
1
2

𝑛
􏾜
𝑘=−𝑛

𝑒𝑖𝑘(𝑥−𝑡)
⎞
⎟⎟⎟⎟⎟⎠ 𝑑𝑡.
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Definition 20 (Dirichlet kernel). We define the Dirichlet kernel

𝐷𝑛(𝑥 − 𝑡) ∶=
1
2

𝑛
􏾜
𝑘=−𝑛

𝑒𝑖𝑘(𝑥−𝑡).

Then we have
𝑠𝑛(𝑓; 𝑥) =

1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝐷𝑛(𝑥 − 𝑡)𝑑𝑡.

Note that

𝐷𝑛(𝑡) =
1
2 ⋅

𝑒−𝑖𝑛𝑡(𝑒𝑖(2𝑛+1)𝑡 − 1)
𝑒𝑖𝑡 − 1 = sin (𝑛 + 1/2)𝑡

2 sin 𝑡/2 .

We have some important properties:

Proposition 1.

1. 𝐷𝑛 is an even function and 1𝜋 􏾙
𝜋

−𝜋
𝐷𝑛(𝑡)𝑑𝑡 =

1
2𝜋 􏾙

𝜋

0
𝐷𝑛(𝑡)𝑑𝑡 = 1.

2. |𝐷𝑛(𝑡)| ≤ (1/2)∑
𝑛
𝑘=−𝑛 |𝑒𝑖𝑘𝑡| = 𝑛 + (1/2).

3. |𝐷𝑛(𝑡)| ≤
𝜋
2 |𝑡| .

Proof. Some simple calculus calculation gives us

sin 􏿵 𝑡2
􏿸 ≥ 𝑡

𝜋 whenever 0 ≤ 𝑡 ≤ 𝜋.

This proves the Proposition 3.

Now we shall introduce a classic trick. We write

𝐷♯
𝑛 ∶=

𝐷𝑛−1(𝑡) + 𝐷𝑛(𝑡)
2 .

Then we have

𝐷♯
𝑛(𝑡) =

sin (𝑛 − 1/2)𝑡 + sin (𝑛 + 1/2)𝑡
4 sin (𝑡/2) = sin(𝑛𝑡)

2 tan (𝑡/2)
and

𝐷𝑛(𝑡) − 𝐷
♯
𝑛(𝑡) =

𝐷𝑛 − 𝐷𝑛−1
2 = cos (𝑛𝑡)

2 .
This implies that

𝑠𝑛(𝑓; 𝑥) =
1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝐷𝑛(𝑥 − 𝑡)𝑑𝑡

= 1
𝜋 􏿶􏾙

𝜋

−𝜋
𝑓(𝑡)𝐷♯

𝑛(𝑥 − 𝑡)𝑑𝑡 +􏾙
𝜋

−𝜋
𝑓(𝑡)(𝐷𝑛 − 𝐷

♯
𝑛)(𝑥 − 𝑡)𝑑𝑡􏿹 .

Whenwe study whether 𝑠𝑛(𝑓; 𝑥) converges to a function, wemay only need to study whether
the sequence

􏾙
𝜋

−𝜋
𝑓(𝑡)𝐷♯

𝑛(𝑥 − 𝑡)𝑑𝑡

converges, since Riemann-Lebesgue’s Theorem (Theorem 19) asserts that

􏾙
𝜋

−𝜋
𝑓(𝑡)(𝐷𝑛 − 𝐷

♯
𝑛)(𝑥 − 𝑡)𝑑𝑡 → 0 as 𝑛 → ∞.
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Lemma 7. Suppose 𝑓 ∈ 𝐿1. Then

lim
𝑛→∞

𝑠𝑛(𝑓; 𝑥) = lim
𝑛→∞

1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)sin 𝑛(𝑥 − 𝑡)𝑥 − 𝑡 𝑑𝑡,

provided that the limit on the right side exists.

Proof. We first define a function 𝜙(𝑡) ∶= 1
tan (𝑡/2) −

1
(𝑡/2) defined on [−𝜋, 𝜋]. By L’Hopital Rule,

𝜙 is bounded. Thus it is integrable.
1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝐷♯

𝑛(𝑥 − 𝑡)𝑑𝑡 =
1
𝜋 􏿶􏾙

𝜋

−𝜋

𝑓(𝑡)𝜙(𝑥 − 𝑡) sin 𝑛(𝑥 − 𝑡)
2 𝑑𝑡 +􏾙

𝜋

−𝜋
𝑓(𝑡)sin 𝑛(𝑥 − 𝑡)𝑥 − 𝑡 𝑑𝑡􏿹 .

Note that by Riemann-Lebesgue’s Theorem (Theorem 19) again,

􏾙
𝜋

−𝜋

𝑓(𝑡)𝜙(𝑥 − 𝑡) sin 𝑛(𝑥 − 𝑡)
2 𝑑𝑡 → 0.

This proves the theorem.

Here are more properties of 𝐷♯
𝑛.

Proposition 2.

1. 𝐷♯
𝑛 is an even function and 1𝜋 􏾙

𝜋

−𝜋
𝐷♯
𝑛(𝑡)𝑑𝑡 = 1.

2. |𝐷♯
𝑛| ≤ 𝑛.

3. |𝐷♯
𝑛| ≤

𝜋
|𝑡| .

Since 𝐷♯
𝑛 is an even function and 𝑓 is periodic, we may write

𝑠♯𝑛(𝑓; 𝑥) ∶=
1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝐷♯

𝑛(𝑥 − 𝑡)𝑑𝑡

= 1
𝜋 􏾙

𝜋

−𝜋

𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)
2 𝐷♯

𝑛(𝑡)𝑑𝑡

= 1
𝜋 􏾙

𝜋

0
􏿴𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)􏿷𝐷♯

𝑛(𝑡)𝑑𝑡

We now gives the following theorem. This theorem is known as Dini’s Theorem, it pro-
vides an sufficient condition for a Fourier series to converge.

Theorem 21 (Dini’s Theorem). Suppose 𝑓 ∈ 𝐿1[−𝜋, 𝜋]. Given 𝑥 ∈ [−𝜋, 𝜋]. If there is a real
number 𝐴 such that

􏾙
𝜋

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝐴| 𝑑𝑡𝑡 < ∞.

Then 𝑠𝑛(𝑓; 𝑥) → 𝐴.

Proof. It suffices to show that 𝑠♯𝑛(𝑓; 𝑥) → 𝐴 by discussions above. Since

𝐴 = 𝐴 × 1 = 𝐴 × 1
𝜋 􏾙

𝜋

−𝜋
𝐷♯
𝑛(𝑡)𝑑𝑡,

we have

𝑠♯𝑛(𝑓; 𝑥) − 𝐴 = 2
𝜋 􏾙

𝜋

0
􏿶
𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)

2 − 𝐴􏿹 ⋅
sin (𝑛𝑡)
2 tan (𝑡/2)𝑑𝑡.
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Note that
𝜋
2 |𝑠

♯
𝑛(𝑓; 𝑥) − 𝐴| ≤􏾙

𝜋

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝐴| ⋅ sin (𝑛𝑡)𝑡 𝑑𝑡

+􏾙
𝜋

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝐴| ⋅ 􏿶

1
2 tan (𝑡/2) −

1
𝑡 􏿹 sin (𝑛𝑡)𝑑𝑡.

Since ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝐴| ⋅ 1𝑡 ∈ 𝐿
1[−𝜋, 𝜋]

|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝐴| ⋅ 􏿶
1

2 tan (𝑡/2) −
1
𝑡 􏿹 ∈ 𝐿

1[−𝜋, 𝜋]
.(fix𝑥),

Riemann-Lebesgue’s Theorem asserts that both integral converge to 0 as 𝑛 → ∞which indi-
cates 𝑠♯𝑛(𝑓; 𝑥) → 𝐴.

Corollary. In particular, 𝑓 ∈ 𝐶1[−𝜋, 𝜋], then 𝑠𝑛(𝑓; 𝑥) → 𝑓. In fact, if 𝑓 is locally Lipschitz, then
𝑠𝑛(𝑓; 𝑥) → 𝑓(𝑥) at that point 𝑥.

Theorem 22. Let 𝜔 be a function defined by

𝜔(𝑓; 𝑥) = 1
2𝜋 􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡) − 𝑓(𝑡)| 𝑑𝑡.

Suppose

􏾙
𝜋

0
𝜔(𝑓; 𝑥) ⋅ 𝑑𝑥𝑥 < ∞.

Then 𝑠𝑛(𝑓; 𝑥) → 𝑓(𝑥) almost everywhere.

Proof. Consider the function 𝐼 defined by

𝐼(𝑥) = 􏾙
𝜋

0
|𝑓(𝑥 + 𝑡) − 𝑓(𝑡)| 𝑑𝑡𝑡 .

Then we have

􏾙
𝜋

−𝜋
𝐼(𝑥)𝑑𝑥 = 􏾙

𝜋

−𝜋
􏾙

𝜋

0
|𝑓(𝑥 + 𝑡) − 𝑓(𝑡)| 𝑑𝑡𝑡 ⋅ 𝑑𝑥

= 􏾙
𝜋

0
􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡) − 𝑓(𝑡)| 𝑑𝑥 ⋅ 𝑑𝑡𝑡 (Tonelli’s theorem)

= 2𝜋􏾙
𝜋

0
𝜔(𝑓; 𝑥) ⋅ 𝑑𝑡𝑡 < ∞ (by assumption).

Hence 𝐼(𝑥) is finite almost everywhere. That is,

􏾙
𝜋

0
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)| ⋅ 𝑑𝑡𝑡 < ∞ ⟹ 􏾙

𝜋

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| ⋅ 𝑑𝑡𝑡 < ∞.

By Dini’s Theorem (Theorem 21), we obtain 𝑠𝑛(𝑓; 𝑥) → 𝑓(𝑥) almost everywhere.

The convergence of 𝑠𝑛(𝑓; 𝑥) depends on the local properties of 𝑓. Even 𝑓 is continuous,
𝑠𝑛(𝑓; 𝑥) can still diverge at some points. We now shall show the following theorem.

Theorem 23. There exists a function 𝑓 ∈ 𝐶[−𝜋, 𝜋] such that 𝑠𝑛(𝑓; 0) diverges.

Before proving this theorem, we shall first prove some useful theorems.
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Theorem 24 (Uniform bounded principle). Let 𝑋 be a complete normed space and let 𝑌 be a
normed space. Let {𝑇𝑛}∞𝑛=1 be a family of bounded linear transformation from 𝑋 to 𝑌. (The bound-
edness might not be uniform.) Assume that for all 𝑥 ∈ 𝑋, the set {𝑇𝑛(𝑥)}∞𝑛=1 is bounded in 𝑌. Then
{𝑇𝑛}∞𝑛=1 is uniform bounded. In other words, there exists a number 𝐶 > 0 such that ‖𝑇𝑛‖ ≤ 𝐶 < ∞ for
all 𝑛 ∈ ℕ.

Proof. We first claim that there exist 𝑥0 ∈ 𝑋, 𝜖 > 0 and a constant 𝐾 > 0 such that ‖𝑇𝑛(𝑥)‖ ≤ 𝐾
whenever 􏿎𝑥 − 𝑥0􏿎 ≤ 𝜖. If the claim is not true, then for all 𝑥 ∈ 𝑋 and 𝜖 > 0,

∞
􏾌
𝑛=1

𝑇𝑛(𝐵(𝑥; 𝜖)) is not bounded.

Let 𝑥0 be an arbitrary vector in 𝑋, and let 𝑟0 = 1. Consider 𝐵0 = 𝐵(𝑥0; 𝑟0). There exists 𝑥1 ∈ 𝐵0
and 𝑛1 ∈ ℕ such that 􏿎𝑇𝑛1(𝑥1)􏿎 > 1. Since 𝑇𝑛1 is continuous, there is 𝑟1 ∈ (0, 1) such that
􏿎𝑇𝑛1(𝑥)􏿎 > 1 whenever 𝑥 ∈ 𝐵1 ∶= 𝐵(𝑥1; 𝑟1). Suppose 𝑥1, … , 𝑥𝑘 and 𝑟1, … , 𝑟𝑘 have been chosen.
Choose 𝑥𝑘+1 ∈ 𝐵𝑘 ∶= 𝐵(𝑥𝑘; 𝑟𝑘) and 𝑛𝑘+1 such that 􏿎𝑇𝑛𝑘+1(𝑥𝑘+1)􏿎 > 𝑘 + 1. The continuity of 𝑇𝑛𝑘+1
indicates that there is a number 𝑟𝑘+1 ∈ (0, 1/(𝑘 + 1)) such that 𝐵𝑘+1 ⊂ 𝐵𝑘 and

􏿎𝑇𝑛𝑘+1(𝑥)􏿎 > 𝑘 + 1 whenever 𝑥 ∈ 𝐵𝑘+1 ∶= 𝐵(𝑥𝑘+1; 𝑟𝑘+1).

Then (𝐵𝑘) is a decreasing closed ball on 𝑋 and the diameter of these balls converge to 0 as
𝑛 → ∞. 𝑋 is complete, hence

∞
􏾎
𝑛=1

𝐵𝑛 = {𝑣}.

Note that
􏿎𝑇𝑛𝑘(𝑣)􏿎 → ∞ as 𝑘 → ∞

which contradicts to the assumption that {𝑇𝑛(𝑥)} is a bounded set in 𝑌. Hence our claim
is true. There are 𝑥0 ∈ 𝑋, 𝜖 > 0, and a constant 𝐾 > 0 such that ‖𝑇𝑛(𝑥)‖ ≤ 𝐾 whenever
􏿎𝑥 − 𝑥0􏿎 ≤ 𝜖. Now for all 𝑥 ∈ 𝑋, we consider

𝑧 ∶= 𝜖𝑥
‖𝑥‖ + 𝑥0.

We have ‖𝑇𝑛(𝑧)‖ ≤ 𝐾. This implies that

􏿑𝑇𝑛 􏿶
𝜖𝑥
‖𝑥‖􏿹 + 𝑇𝑛(𝑥0)􏿑 ≤ 𝐾 ⟹ ‖𝑇𝑛(𝑥)‖ ⋅

𝜖
‖𝑥‖ ≤ 𝐾 + 􏿎𝑇𝑛(𝑥0)􏿎

⟹ ‖𝑇𝑛(𝑥)‖ ≤ (𝐾 + 𝐶𝑥0) ⋅ 𝜖 ⋅ ‖𝑥‖ ,

where 𝐶𝑥0 > 0 is the constant that
􏿎𝑇𝑛(𝑥0)􏿎 ≤ 𝐶𝑥0 .

This completes the proof.

Lemma 8. Recall that 𝐷𝑛 is the Dirichlet kernel. We have the following.

𝐿𝑛 ∶=
1
𝜋 􏾙

𝜋

−𝜋
|𝐷𝑛(𝑡)| 𝑑𝑡 ∈ Θ(log 𝑛).
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In other words, there exist constants 𝑐2 ≥ 𝑐1 > 0 and 𝑛0 ∈ ℕ such that

𝑐1 log 𝑛 ≤ 𝐿𝑛 ≤ 𝑐2 log 𝑛 whenever 𝑛 ≥ 𝑛0.

We will omit the proof here.
Proof of Theorem 23. Suppose such 𝑓 does not exist. Let 𝑇𝑛 ∶ 𝐶[−𝜋, 𝜋] → ℂ be a family of
functions defined by

𝑇𝑛(𝑓) = 𝑠𝑛(𝑓; 0) =
1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝐷𝑛(𝑡)𝑑𝑡.

Since we assume each 𝑓 ∈ 𝐶[−𝜋, 𝜋], its Fourier series 𝑠𝑛(𝑓; 0) at 0 always converge. This
implies that there is 𝐶𝑓 > 0 such that

􏿎𝑇𝑛(𝑓)􏿎 ≤ 𝐶𝑓 < ∞.

By the Uniform Bounded Principle (Theorem 24), there exists 𝐶 > 0 such that

􏿎𝑇𝑛(𝑓)􏿎 ≤ 𝐶 < ∞ for all 𝑛 ∈ ℕ and 𝑓 ∈ 𝐶[−𝜋, 𝜋].

It now suffices to show that for all𝑀 > 0 there exist 𝑘 ∈ ℕ and 𝑓𝑘 ∈ 𝐶[−𝜋, 𝜋] such that

|𝑇𝑘(𝑓𝑘)| > 𝑀.

This follows by Lemma 8, and the fact that

􏿶􏾙
𝜋

−𝜋
|𝐷𝑛(𝑡)| 𝑑𝑡􏿹

2

≤ 􏿶􏾙
𝜋

−𝜋
|𝐷𝑛(𝑡)|

2 𝑑𝑡􏿹 􏿶􏾙
𝜋

−𝜋
1𝑑𝑡􏿹 = 2𝜋 ⋅ 𝑇𝑛(𝐷𝑛).

□
Here we shall introduce somemore properties of Fourier coefficients and Fourier series.

Proposition 3.

1. Given 𝑓(𝑡) and given 𝑎 ∈ ℝ, let 𝑓𝑎(𝑡) = 𝑓(𝑎 + 𝑡). Then

𝑐𝑘(𝑓𝑎) = 􏾙𝑓𝑎(𝑡)𝑒−𝑖𝑘𝑡𝑑𝑡 = 􏾙𝑓(𝑡 + 𝑎)𝑒−𝑖𝑘𝑡𝑑𝑡 = 􏾙𝑓(𝑡 + 𝑎)𝑒−𝑖𝑘(𝑡+𝑎)𝑒𝑖𝑘𝑎𝑑𝑡 = 𝑐𝑘(𝑓) ⋅ 𝑒𝑖𝑘𝑎.

2. Given 𝑓(𝑡) and let 𝑔(𝑡) = 𝑓(𝑡) ⋅ 𝑒𝑖𝑛𝑡. Then

𝑐𝑘(𝑔) = 􏾙𝑓(𝑡)𝑒𝑖(𝑛−𝑘)𝑡𝑑𝑡 = 𝑐𝑘−𝑛(𝑓).

3. Let 𝑓 ∈ 𝐿1[−𝜋, 𝜋]. Let

𝐹(𝑡) ∶= 𝑐 +􏾙
𝑡

0
𝑓(𝑠)𝑑𝑠.

Then

𝐹(𝑡) − 𝑐0𝑡 ∼ 𝑐′ +􏾜
𝑘≠0

𝑐𝑘(𝑓)
𝑖𝑘 𝑒𝑖𝑘𝑡.

4. If 𝑓 is absolutely continuous and assume 𝑓 and 𝑓′ is periodic. Suppose

𝑓 ∼
∞
􏾜
𝑘=−∞

𝑐𝑘𝑒𝑖𝑘𝑡.
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Then

𝑓′ ∼
∞
􏾜
𝑘=−∞

𝑖𝑘𝑐𝑘𝑒𝑖𝑘𝑡.

5. If 𝑓 is absolutely continuous, then |𝑐𝑘(𝑓)| = 𝑜(1/𝑘).

6. If 𝑐𝑘(𝑓) and 𝑐𝑘(𝑔) are the Fourier coefficients of 𝑓 and 𝑔 respectively, then

𝑓 ∗ 𝑔 ∼
∞
􏾜
𝑘=−∞

𝑐𝑘(𝑓)𝑐𝑘(𝑔)𝑒𝑖𝑘𝑡.

The proposition above use the notation ∗, it means “convolution”. We shall give a defi-
nition here.

Definition 25 (Convolution). Let 𝑓, 𝑔 ∈ 𝐿[−𝜋, 𝜋] be two periodic functions. We define the
convolution of 𝑓 and 𝑔 be

𝑓 ∗ 𝑔(𝑥) = 􏾙
𝜋

−𝜋
𝑓(𝑥 − 𝑡)𝑔(𝑡)𝑑𝑡 = 􏾙

𝜋

−𝜋
𝑓(𝑡)𝑔(𝑥 − 𝑡)𝑑𝑡.

Proof. We shall prove the non-trivial ones.

3. Note that 𝐹(𝑡 + 2𝜋) − 𝐹(𝑡) = 􏾙
𝑡+2𝜋

𝑡
𝑓(𝑠)𝑑𝑠 = 2𝜋𝑐0(𝑓). Let 𝐻(𝑡) = 𝐹(𝑡) − 𝑐0(𝑓) ⋅ 𝑡. It is clear

that 𝐻 is a periodic function. We now compute its Fourier coefficients.

2𝜋 ⋅ 𝑐𝑘(𝐻) = 􏾙
𝜋

−𝜋
𝐻(𝑡)𝑒−𝑖𝑘𝑡𝑑𝑡

= 𝐻(𝜋)exp (−𝑖𝑘𝜋)−𝑖𝑘 − 𝐻(−𝜋)exp (𝑖𝑘𝜋)−𝑖𝑘 +􏾙
𝜋

−𝜋

𝑓(𝑡)
𝑖𝑘 ⋅ 𝑒−𝑖𝑘𝑡𝑑𝑡

= 2𝜋𝑐𝑘(𝑓)
𝑖𝑘 .

4. We have

𝑓(𝑡) = 𝑓(−𝜋) +􏾙
𝑡

−𝜋
𝑓′(𝑠)𝑑𝑠

for almost every 𝑡 ∈ ℝ. By the last proposition, we obtain

𝑓(𝑡) − 𝑐0(𝑓′)𝑡 ∼ 𝑐′ +􏾜
𝑘≠0

𝑐𝑘(𝑓′)
𝑖𝑘 𝑒𝑖𝑘𝑡.

The assertion follows from 𝑐0(𝑓′) = 0. (𝑓 is periodic.)

5. Since 𝑓′ ∈ 𝐿1[−𝜋, 𝜋], it follows by the Riemann-Lebesgue Theorem that |𝑖𝑘𝑐𝑘| → 0 and
thus |𝑐𝑘| = 𝑜(1/𝑘).

6. Consider

𝑐𝑘(𝑓 ∗ 𝑔) = 􏾙
𝜋

−𝜋
􏿶􏾙

𝜋

−𝜋
𝑓(𝑥 − 𝑡)𝑔(𝑡)𝑑𝑡􏿹 𝑒−𝑖𝑘𝑥𝑑𝑥

= 􏿶􏾙
𝜋

−𝜋
𝑔(𝑡)𝑒−𝑖𝑘𝑡𝑑𝑡􏿹 􏿶􏾙

𝜋

−𝜋
𝑓(𝑥 − 𝑡)𝑒−𝑖𝑘(𝑥−𝑡)𝑑𝑥􏿹 (By Fubini’s Theorem.)

= 𝑐𝑘(𝑓) ⋅ 𝑐𝑘(𝑔).
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It is worth noting that Fubini’s Theorem is applicable since

􏿎𝑓𝑔􏿎1 ≤ 􏿎𝑓􏿎1 ⋅ 􏿎𝑔􏿎1 ,

which could be obtained by applying Tonelli’s Theorem to􏾙|𝑓| ∗ |𝑔|.

Remark. In fact, we have 𝑓 is [𝛼]-order differentiable if |𝑐𝑘(𝑓)| = 𝑜(1/𝑘𝛼).

4 Cesàro sum of Fourier series
In last subsection, we find that 𝑠𝑛(𝑓; 𝑥)might not even converge although 𝑓 is continuous.

We want to study whether it converges in Cesàro sense.

Definition 26. A sequence of number {𝑐𝑗}∞𝑗=1 is said to be Cesàro summable to 𝐿, if
𝑐1 + 𝑐2 +⋯+ 𝑐𝑛

𝑛 → 𝐿

as 𝑛 → ∞.

We write

𝜎𝑛(𝑓; 𝑥) =
𝑠0(𝑓; 𝑥) + 𝑠1(𝑓; 𝑥) +⋯ + 𝑠𝑛(𝑓; 𝑥)

𝑛 + 1 .

Note that 𝑠𝑚(𝑓; 𝑥) =
𝑚
􏾜
𝑗=−𝑚

𝑐𝑘𝑒𝑖𝑘𝑥. Some calculations give us

𝜎𝑛(𝑓; 𝑥) =
𝑛
􏾜
𝑗=−𝑛

⎛
⎜⎜⎜⎝1 −

|𝑗|
𝑛 + 1

⎞
⎟⎟⎟⎠ 𝑐𝑗𝑒𝑖𝑗𝑥.

Also we have

𝜋𝜎𝑛(𝑓; 𝑥) =
𝑓 ∗ 𝐷0 +⋯+ 𝑓 ∗ 𝐷𝑛

𝑛 + 1 = 𝑓 ∗ 𝐷0 +⋯+𝐷𝑛
𝑛 + 1 .

Now we simplify it. We often write 𝐾𝑛 to denote

𝐷0 +⋯+𝐷𝑛
𝑛 + 1 = 1

2 sin (𝑡/2)ℑ

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑗=0
𝑒𝑖(𝑗+1/2)𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠ ⋅

1
𝑛 + 1

= 1
2 sin (𝑡/2)ℑ􏿶𝑒

𝑖𝑡/2 ⋅ 1 − 𝑒
𝑖(𝑛+1)𝑡

1 − 𝑒𝑖𝑡 􏿹 ⋅
1

𝑛 + 1

= 1
2(𝑛 + 1) ⋅ 􏿶

sin ((𝑛 + 1)𝑡/2)
sin (𝑡/2) 􏿹

2

It is worth noting that some other books often define

𝐾𝑛 ∶=
1
2𝑛 ⋅ 􏿶

sin 𝑛𝑡/2
sin (𝑡/2)􏿹

2

which is more reasonable. However, I am not interested in fixing up this issue in this note.
Similar to what we have done before, there are some basic properties of 𝐾𝑛 could be derived
immediately.
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Proposition 4.

1. 𝐾𝑛 is nonnegative and 𝐾𝑛 is an even function.

2. 1𝜋 􏾙
𝜋

−𝜋
𝐾𝑛(𝑡)𝑑𝑡 = 1.

3. 𝐾𝑛(𝑡) ≤
1

𝑛 + 1

𝑛
􏾜
𝑗=0
􏿶𝑗 +

1
2􏿹 ≤

𝑛 + 1
2 . (Recall that |𝐷𝑛(𝑡)| ≤ 𝑛 +

1
2 .)

4. 𝐾𝑛(𝑡) ≤
𝜋
2 |𝑡| . Another upper bound is

𝜋2
2(𝑛 + 1)𝑡2 .

5. 𝜎𝑛(𝑓; 𝑥) =
1
𝜋 􏾙

𝜋

−𝜋

𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)
2 𝐾𝑛(𝑡)𝑑𝑡 =

1
𝜋 􏾙

𝜋

0
􏿴𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)􏿷 𝐾𝑛(𝑡)𝑑𝑡.

Although it is very likely that a Fourier series of a function may not converge, it is easy
for it to converge in Cesàro sense. We have the following theorem.

Theorem 27 (Fejer’s Theorem). Suppose 𝑓 ∈ 𝐿1[−𝜋, 𝜋]. Assume that both 𝑓(𝑥+) and 𝑓(𝑥−) exist.
Then

𝜎𝑛(𝑓; 𝑥) →
𝑓(𝑥+) + 𝑓(𝑥−)

2 .

Proof. Without loss of generality, we may assume 𝑓(𝑥) = 􏿴𝑓(𝑥+) + 𝑓(𝑥−)􏿷 /2. (Changing a
value of a point does not impact the Fourier coefficients.) Now we have

𝜎𝑛(𝑓; 𝑥) − 𝑓(𝑥) =
2
𝜋 􏾙

𝜋

0
􏿶
𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)

2 − 𝑓(𝑥)􏿹 𝐾𝑛(𝑡)𝑑𝑡.

Given 𝜖 > 0. There exists a 𝛿 > 0 such that
⎧⎪⎪⎨
⎪⎪⎩
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥+)| < 𝜖, if 0 < 𝑡 < 𝛿
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥−)| < 𝜖, if − 𝛿 < 𝑡 < 0

This implies that

|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| < 𝜖, if |𝑡| < 𝛿.

It follows that

􏾙
𝛿

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝐾𝑛(𝑡)𝑑𝑡 ≤ 𝜖 ⋅ 􏾙

𝜋

0
𝐾𝑛(𝑡)𝑑𝑡 =

𝜖𝜋
2 (1)

and that

􏾙
𝜋

𝛿
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝐾𝑛(𝑡)𝑑𝑡 ≤

𝜋2 ⋅ 𝐶
2(𝑛 + 1)𝛿2 (2)

where 𝐶 is the constant

𝐶 ∶= 􏾙
𝜋

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝑑𝑡.

Together with (1) and (2), we conclude that

|𝜎𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 𝜖 +
𝜋𝐶

(𝑛 + 1)𝛿2 .

This shows 𝜎𝑛(𝑓; 𝑥) → 𝑓(𝑥) ∶= (1/2)(𝑓(𝑥+) + 𝑓(𝑥−)).
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Remark.

1. If 𝑓 is continuous at 𝑥, then 𝜎𝑛(𝑓; 𝑥) → 𝑓(𝑥).

2. If 𝑓 is continuous on [𝑐, 𝑑] ⊂ [−𝜋, 𝜋], then 𝜎𝑛 → 𝑓 uniformly on [𝑐, 𝑑].

Proof. We shall give a proof to the second assertion. For all 𝑥 ∈ [𝑐, 𝑑], there exist𝑁 = 𝑁(𝑥) ∈ ℕ
and 𝛿 = 𝛿(𝑥) > 0 such that

|𝜎𝑛(𝑓; 𝑡) − 𝑓(𝑡)| < 𝜖 whenever 𝑡 ∈ 𝐵(𝑥; 𝛿) and 𝑛 ≥ 𝑁.

The remaining part follows by the fact that [𝑐, 𝑑] is a compact interval.

Corollary. Suppose 𝑓 is continuous on [−𝜋, 𝜋], then given 𝜖 > 0, there is a trigonometric
polynomial 𝑃 such that

|𝑃(𝑥) − 𝑓(𝑥)| < 𝜖 for all 𝑥 ∈ [−𝜋, 𝜋].

This corollary follows by last remark. We now prove a similar result, however not under
the supremum norm, but under the 𝐿1 norm instead.

Lemma 9. Suppose 𝑓 ∈ 𝐿1[−𝜋, 𝜋]. Given 𝜖 > 0. There is a trigonometric polynomial 𝑃 such
that

􏾙
𝜋

−𝜋
|𝑓(𝑥) − 𝑃(𝑥)| 𝑑𝑥 < 𝜖.

In other words, 􏿎𝑓 − 𝑃􏿎1 < 𝜖.

Proof. We may assume that 𝑓 ≥ 0. (Recall that 𝑓 = 𝑓+ − 𝑓−.) It is easy to see that this lemma
holds if 𝑓 is continuous function (by the last corollary). Now suppose 𝑓 = 𝜒𝐴, where 𝐴 is a
closed set. In Lemma 2, we have shown that there exist continuous function 𝑔𝑛 such that

􏿎𝑔𝑛 − 𝑓􏿎2 <
1
𝑛.

This implies

􏿎𝑔𝑛 − 𝑓􏿎1 <
√𝑏 − 𝑎
𝑛 .

Now let 𝐸 be a measurable set and let 𝑓 = 𝜒𝐸. Then there exist closed sets (𝐴𝑗)𝑗∈ℕ such that

𝑚(𝐸) ≤ 𝑚(𝐴𝑗) +
1
𝑗 .

Hence 􏿏𝑓 − 𝜒𝐴𝑗􏿏1 < 1/𝑗 and 􏿎𝑓 − 𝑔􏿎 < 𝜖 for some continuous function 𝑔. We have proved the
case when 𝑓 is 𝜒𝐸, 𝐸 is a measurable set. Now for general integrable function 𝑓, we know
that there is some closed set 𝐸𝑗 and 𝑐𝑗 ∈ ℝ such that

􏿑
􏿑
𝑓 −

𝑛
􏾜
𝑗=1
𝑐𝑗𝜒𝐸𝑗

􏿑
􏿑
1

< 𝜖.

Thus we see that there are some continuous function 𝑔 such that 􏿎𝑓 − 𝑔􏿎1 < 𝜖.

We now generalize the idea of 𝐿2 and 𝐿1 norm to general 𝐿𝑝 norm.
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Definition 28.

1. If 1 ≤ 𝑝 < ∞, let 𝐿𝑝[−𝜋, 𝜋] = {𝑓 ∶ 􏾙 |𝑓|
𝑝
< ∞}, and we use ‖⋅‖𝑝 = 􏿵􏾙 |𝑓|

𝑝􏿸
1/𝑝

to denote the
standard norm on 𝐿𝑝 space.

2. If 𝑝 = ∞, let

𝐿∞[−𝜋, 𝜋] = {𝑓 ∶ ∃𝑀 > 0 such that |𝑓(𝑥)| ≤ 𝑀 < ∞ for almost every 𝑥}.

We use 􏿎𝑓􏿎∞ = inf𝑀 to denote the norm on 𝐿∞, where the infimum is taken among all 𝑀
such that |𝑓(𝑥)| ≤ 𝑀 < ∞ almost everywhere.

Theorem 29 (Continuity in the 𝐿𝑝 norm). Let 𝑓 ∈ 𝐿𝑝[−𝜋, 𝜋] (1 ≤ 𝑝 < ∞). Then

lim
ℎ→0

􏾙
𝜋

−𝜋
|𝑓(𝑡 + ℎ) − 𝑓(𝑡)|

𝑝
𝑑𝑡 = 0.

Proof. First if 𝑔 is continuous on [−𝜋, 𝜋], then it is clear that

lim
ℎ→0

|𝑔(𝑡 + ℎ) − 𝑔(𝑡)|
𝑝
𝑑𝑡 = 0.

In the proof of Lemma 9, we have shown that every function 𝑓 in 𝐿1, there exists a continuous
function 𝑔 such that

􏿎𝑓 − 𝑔􏿎1 < 𝜖.
A slight modification on the proof give that: if 𝑓 ∈ 𝐿𝑝, there is a continuous function 𝑔 such
that

􏿎𝑓 − 𝑔􏿎𝑝 < 𝜖.

Now we have

􏾙
𝜋

−𝜋
|𝑓(𝑡 + ℎ) − 𝑓(𝑡)|

𝑝
𝑑𝑡 = 􏾙

𝜋

−𝜋
|𝑓(𝑡 + ℎ) − 𝑔(𝑡 + ℎ) + 𝑔(𝑡 + ℎ) − 𝑔(𝑡) + 𝑔(𝑡) − 𝑓(𝑡)|

𝑝
𝑑𝑡

≤ 3𝑝−1 􏿶􏾙
𝜋

−𝜋
|𝑓(𝑡 + ℎ) − 𝑔(𝑡 + ℎ)|

𝑝
𝑑𝑡 +􏾙

𝜋

−𝜋
|𝑔(𝑡 + ℎ) − 𝑔(𝑡)|

𝑝
𝑑𝑡 +􏾙

𝜋

−𝜋
|𝑔(𝑡) − 𝑓(𝑡)|

𝑝
𝑑𝑡􏿹 .

The right side converges to 0 as ℎ → 0.

Theorem 30. Let 𝑓 ∈ 𝐿𝑝[−𝜋, 𝜋] (1 ≤ 𝑝 < ∞). Then,

1. 􏿎𝜎𝑛(𝑓) − 𝑓􏿎𝑝 → 0 as 𝑛 → ∞.

2. 􏿎𝜎𝑛(𝑓)􏿎𝑝 ≤ 􏿎𝑓􏿎𝑝 for all 𝑛 ∈ ℕ.

We shall first prove another very useful result, which is known as Hölder’s inequality.

Theorem 31 (Hölder’s inequality). Let 1 ≤ 𝑝 ≤ ∞, 1 ≤ 𝑞 ≤ ∞ be two integers such that
1
𝑝 +

1
𝑞 = 1.

Then we have

􏾙|𝑓𝑔| ≤ 􏿵􏾙 |𝑓|
𝑝􏿸
1/𝑝
􏿵􏾙 |𝑔|

𝑞􏿸
1/𝑞
.

In other words, 􏿎𝑓𝑔􏿎1 ≤ 􏿎𝑓􏿎𝑝 ⋅ 􏿎𝑔􏿎𝑞 . The latter statement is valid when 𝑝 or 𝑞 is∞.
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Proof. We may assume that 𝑝, 𝑞 ≠ ∞, otherwise it is trivial. We first claim that

|𝑓(𝑥)𝑔(𝑥)| ≤ 1
𝑝 |𝑓(𝑥)|

𝑝
+ 1𝑞 |𝑔(𝑥)|

𝑞
for all 𝑥. (3)

If the claim is true, then for any 􏿎𝑓􏿎𝑝 = 1 = 􏿎𝑔􏿎𝑞, we have

􏾙|𝑓𝑔| ≤ 1
𝑝 􏾙 |𝑓|

𝑝
+ 1𝑞 􏾙 |𝑔|

𝑞
= 1
𝑝 +

1
𝑞 = 1 ⟹ 􏿎𝑓𝑔􏿎1 ≤ 1.

For 𝑓 and 𝑔 such that 􏿎𝑓􏿎𝑝 ≠ 1 or 􏿎𝑔􏿎𝑞 ≠ 1, we could normalize it to 1. It now remains to show
our claim is true. We write 𝑎 = |𝑓(𝑥)|, 𝑏 = |𝑔(𝑥)|, 𝑠 = 1/𝑝, and 𝑡 = 1/𝑞. Then (3) is equivalent to

𝑎𝑠𝑏𝑡 ≤ 𝑎𝑠 + 𝑏𝑡 ⟺ 𝑠 log 𝑎 + 𝑡 log 𝑏 ≤ log (𝑎𝑠 + 𝑏𝑡),

holds for all 𝑠 + 𝑡 = 1, 𝑠, 𝑡 ∈ (0, 1), 𝑎, 𝑏 > 0. The concavity of log implies the theorem.

Proof of Theorem 30. Our objective is to show that􏾙|𝜎𝑛(𝑓) − 𝑓|
𝑝
→ 0. Let

𝐹(𝑡)𝑝 = 􏾙 |𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|
𝑝
𝑑𝑥.

We know that 𝐹(𝑡)𝑝 is continuous at 𝑡 = 0 (Theorem 29). Note that

𝜎𝑛(𝑓; 𝑥) − 𝑓(𝑥) =
1
𝜋 􏾙

𝜋

−𝜋
(𝑓(𝑥 + 𝑡) − 𝑓(𝑥))𝐾𝑛(𝑡)𝑑𝑡.

Let 𝑞 ∈ (1,∞] such that 1/𝑝 + 1/𝑞 = 1. Then

􏾙
𝜋

−𝜋
(𝑓(𝑥 + 𝑡) − 𝑓(𝑥))𝐾𝑛(𝑡)𝑑𝑡 ≤ 􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)| ⋅ 𝐾𝑛(𝑡)1/𝑝 ⋅ 𝐾𝑛(𝑡)1/𝑞𝑑𝑡

♠
≤ 􏿶􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|

𝑝
⋅ 𝐾𝑛(𝑡)𝑑𝑡􏿹

1/𝑝

􏿶􏾙
𝜋

−𝜋
𝐾𝑛(𝑡)𝑑𝑡􏿹

1/𝑞

= 𝜋1/𝑞 􏿶􏾙
𝜋

−𝜋
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|

𝑝
⋅ 𝐾𝑛(𝑡)𝑑𝑡􏿹

1/𝑝

.

The inequality (♠) holds by Hölder’s inequality (Theorem 31). This gives

|𝜎𝑛(𝑓; 𝑥) − 𝑓(𝑥)|
𝑝
≤ 1
𝜋 􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|

𝑝
⋅ 𝐾𝑛(𝑡)𝑑𝑡

⟹ 􏾙
𝜋

−𝜋
|𝜎𝑛(𝑓; 𝑥) − 𝑓(𝑥)|

𝑝
𝑑𝑥 ≤ 1

𝜋 􏾙
𝜋

−𝜋
􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|

𝑝
⋅ 𝐾𝑛(𝑡)𝑑𝑡𝑑𝑥

♣= 1
𝜋 􏾙

𝜋

−𝜋
􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|

𝑝
⋅ 𝐾𝑛(𝑡)𝑑𝑥𝑑𝑡

= 1
𝜋 􏾙

𝜋

−𝜋
𝐹(𝑡)𝑝𝐾𝑛(𝑡)𝑑𝑡 =

1
𝜋𝜎𝑛(𝐹

𝑝; 0) → 0 (Theorem 27).

We can exchange the order of integration in (♣) by Tonelli’s Theorem. The inequality above
proves the first statement. Similarly, we have

|𝜎𝑛(𝑓; 𝑥)|
𝑝
≤ 􏿶

1
𝜋 􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡)| ⋅ 𝐾𝑛(𝑡)1/𝑝 ⋅ 𝐾𝑛(𝑡)1/𝑞𝑑𝑡􏿹

𝑝

≤
⎛
⎜⎜⎜⎜⎝
1
𝜋 􏿶􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡)|

𝑝
𝐾𝑛(𝑡)𝑑𝑡􏿹

1/𝑝

􏿶􏾙
𝜋

−𝜋
𝐾𝑛(𝑡)𝑑𝑡􏿹

1/𝑞⎞⎟⎟⎟⎟⎠

𝑝

= 1
𝜋 􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡)|

𝑝
𝐾𝑛(𝑡)𝑑𝑡.
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Hence

‖𝜎𝑛‖
𝑝
𝑝 = 􏾙

𝜋

−𝜋
|𝜎𝑛(𝑓; 𝑥)|

𝑝
𝑑𝑥 ≤ 1

𝜋 􏾙
𝜋

−𝜋
􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡)|

𝑝
𝐾𝑛(𝑡)𝑑𝑡𝑑𝑥

= 1
𝜋 􏾙

𝜋

−𝜋
􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡)|

𝑝
𝐾𝑛(𝑡)𝑑𝑥𝑑𝑡

=
􏿎𝑓􏿎

𝑝
𝑝

𝜋 􏾙
𝜋

−𝜋
𝐾𝑛(𝑡)𝑑𝑡

= 􏿎𝑓􏿎
𝑝
𝑝 .

This completes the proof. □
The second statement in fact also holds when 𝑝 = ∞ and in that case we could consider

the inequality

􏿎𝜎𝑛(𝑓)􏿎∞ = 1
𝜋 􏾙

𝜋

−𝜋
􏿎𝑓(⋅ + 𝑡)􏿎∞ 𝐾𝑛(𝑡)𝑑𝑡 ≤ 􏿎𝑓􏿎∞ .

We now give a remark on convergence of 𝑠𝑛(𝑓; 𝑥) and 𝜎𝑛(𝑓; 𝑥).

Remark.

1. In 1953, Kolmogorov, a Soviet mathematician, had proved that there exists a function
𝑓 ∈ 𝐿1[−𝜋, 𝜋] such that 𝑠𝑛(𝑓; 𝑥) diverge almost everywhere. A year later, he published another
paper showed that there exists 𝑓 ∈ 𝐿1[−𝜋, 𝜋] such that 𝑠𝑛(𝑓; 𝑥) diverge everywhere.

2. Carleson (1965) showed that for all 𝑓 ∈ 𝐿2[−𝜋, 𝜋], 𝑠𝑛(𝑓; 𝑥) converges to 𝑓(𝑥) for almost
every 𝑥.

3. Hunt (1968) showed that for all 𝑓 ∈ 𝐿𝑝[−𝜋, 𝜋] (𝑝 ∈ (1,∞)), 𝑠𝑛(𝑓; 𝑥) converges to 𝑓(𝑥) for
almost every 𝑥.

However, these theorems are very hard to prove, we will not give a proof here.

Theorem 32. Given a sequence of numbers (𝑐𝑗)∞−∞. Let

𝜎𝑛(𝑡) ∶= 􏾜
|𝑗|≤𝑛

⎛
⎜⎜⎜⎝1 −

|𝑗|
𝑛 + 1

⎞
⎟⎟⎟⎠ 𝑐𝑗𝑒𝑖𝑗𝑡.

Then∑𝑐𝑗𝑒𝑖𝑗𝑡 is the Fourier series of 𝑓 ∈ 𝐶[−𝜋, 𝜋] if and only if 𝜎𝑛 converges uniformly.

Proof. If ∑𝑐𝑗𝑒𝑖𝑗𝑡 is the Fourier series of 𝑓 ∈ 𝐶[−𝜋, 𝜋], then 𝜎𝑛 converges uniformly by the
remark of Theorem 27. Now suppose 𝜎𝑛 converges uniformly. Since (𝜎𝑛) are all continuous,
there exists 𝑓 ∈ 𝐶[−𝜋, 𝜋] such that 𝜎𝑛 ⇉ 𝑓. We claim that

𝑐𝑗 =
1
2𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝑒−𝑖𝑗𝑡𝑑𝑡.

It follows from
1
2𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)𝑒−𝑖𝑗𝑡𝑑𝑡 = 1

2𝜋 lim
𝑛→∞

􏾙
𝜋

−𝜋
𝜎𝑛(𝑡)𝑒−𝑖𝑗𝑡𝑑𝑡

= lim
𝑛→∞

⎛
⎜⎜⎜⎝1 −

|𝑗|
𝑛 + 1

⎞
⎟⎟⎟⎠ 𝑐𝑗 = 𝑐𝑗.

This proves the theorem.
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Lemma 10. Let 1/𝑝 + 1/𝑞 = 1 (1 ≤ 𝑝 ≤ ∞) and let 𝑓 ∈ 𝐿1[−𝜋, 𝜋] such that

􏾙
𝜋

−𝜋
𝑓𝜙 ≤ 𝐾 􏿎𝜙􏿎𝑞

for all simple functions 𝜙, where 𝐾 < ∞ is a positive constant. Then 𝑓 ∈ 𝐿𝑝[−𝜋, 𝜋] and
􏿎𝑓􏿎𝑝 ≤ 𝐾.

Proof. If 𝑝 = 1, it suffices to choose 𝜙 = sign(𝑔) ∈ 𝐿∞. Now assume that 𝑝 ∈ (1,∞). Let {𝜙𝑛}
denote a sequence on nonnegative simple functions such that 𝜙𝑛 ≤ 𝜙𝑛+1 and 𝜙𝑛 → |𝑓|

𝑝
. Since

0 ≤ 𝜙1/𝑝𝑛 ≤ |𝑓| ∈ 𝐿1[−𝜋, 𝜋],

the functions
ℎ𝑛 = 𝜙

1/𝑞
𝑛 sign(𝑓)

are simple and in 𝐿𝑞[−𝜋, 𝜋]. It follows that

􏾙
𝜋

−𝜋
𝜙𝑛 = 􏾙

𝜋

−𝜋
𝜙1/𝑝𝑛 𝜙1/𝑞𝑛 ≤ 􏾙

𝜋

−𝜋
|𝑓| 𝜙1/𝑞𝑛 = 􏾙

𝜋

−𝜋
𝑓ℎ𝑛 ≤ 𝐾 ‖ℎ𝑛‖𝑞 = 𝐾 􏿶􏾙

𝜋

−𝜋
𝜙𝑛􏿹

1/𝑞

This gives

􏿶􏾙
𝜋

−𝜋
𝜙𝑛􏿹

1/𝑝

≤ 𝐾.

By Fatou’s Lemma, we conclude that

􏿎𝑓􏿎𝑝 ≤ 􏿶lim inf
𝑛→∞

􏾙
𝜋

−𝜋
𝜙𝑛􏿹

1/𝑝

≤ 𝐾.

This proves the case when 𝑝 ≠ ∞.
Now assume that 𝑝 = ∞. For any 𝜖 > 0 set

𝐸𝜖 = {𝑥 ∈ [−𝜋, 𝜋] such that |𝑔(𝑥)| ≥ 𝐾 + 𝜖}

and let 𝜙 = 𝜒𝐸𝜖 ⋅ sign(𝑓) be a simple function. Note that 𝑓 ∈ 𝐿1 and the set 𝑚(𝐸𝜖) ≤ 2𝜋,
therefore we have

(𝐾 + 𝜖) ⋅ 𝑚(𝐸𝜖) ≤ |􏾙𝑓𝜙| ≤ 𝐾 ⋅ 𝑚(𝐸𝜖).
Thus 𝑚(𝐸𝜖) = 0 for all 𝜖 > 0.

Theorem 33 (Riesz representation theorem). Given 1/𝑝+1/𝑞 = 1 (1 < 𝑝 ≤ ∞). Then there exists
a bijection

𝐿𝑞[−𝜋, 𝜋]∨ ⟷𝐿𝑝[−𝜋, 𝜋].
More precisely, for each ℓ ∈ (𝐿𝑞)∨, there is a function 𝑓 ∈ 𝐿𝑝 such that

ℓ(𝑔) = 􏾙𝑓𝑔.

Note that here we write 𝑉∨ to denote all linear “bounded” functional on 𝑉.

Proof. Let 𝐹(𝑥) = ℓ(𝜒[−𝜋,𝑥]). We claim that 𝐹 is absolutely continuous. Let {𝐼𝑗 = (𝑎𝑗, 𝑏𝑗)} be
finitely many disjoint intervals be given. Define 𝜙(𝑡) ∶= 􏾜

𝑗
sgn(𝐹(𝑏𝑗) − 𝐹(𝑎𝑗))𝜒𝐼𝑗(𝑡).
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Then, 􏿎𝜙􏿎
𝑞
𝑞 ≤ ∑𝑗 |𝐼𝑗| and it implies that

􏾜
𝑗
|𝐹(𝑏𝑗) − 𝐹(𝑎𝑗)| = ℓ(𝜙) ≤ 𝑀 ⋅ 􏿎𝜙􏿎𝑞 ≤ 𝑀 ⋅

⎛
⎜⎜⎜⎜⎜⎜⎝􏾜𝑗

|𝐼𝑗|

⎞
⎟⎟⎟⎟⎟⎟⎠

1/𝑞

.

This shows 𝐹 is absolutely continuous. Thus there exists 𝑓 ∈ 𝐿1[−𝜋, 𝜋] such that

𝐹(𝑥) = 􏾙
𝑥

−𝜋
𝑓(𝑡)𝑑𝑡.

It implies that

ℓ(𝜒[−𝜋,𝑥]) = 􏾙
𝜋

−𝜋
𝑓(𝑡) ⋅ 𝜒[−𝜋,𝑥](𝑡)𝑑𝑡.

Since ℓ is linear, for any step function 𝑔 = ∑𝑎𝑗𝜒𝐼𝑗 (finite linear combination of 𝜒𝐼𝑗), we have

ℓ(𝑔) = 􏾙
𝜋

−𝜋
𝑓(𝑡)𝑔(𝑡)𝑑𝑡.

Now let 𝑔 = 𝜒𝐸 be the characteristic function of a measurable set. Since 𝐸 is measurable,
then for any given 𝑛 ∈ ℕ, there exist finitely many disjoint open intervals (𝐼𝑗)𝑘𝑗=1 such that

𝑘
􏾌
𝑗=1

𝐼𝑗 ⊃ 𝐸 and
𝑘
􏾜
𝑗=1
𝑚(𝐼𝑗) ≤ 𝑚(𝐸) +

1
𝑛.

Define

𝑔𝑛 =
𝑘
􏾜
𝑗=1
𝜒𝐼𝑗 .

Then
􏾙|𝑔 − 𝑔𝑛| <

1
𝑛 and 􏿎𝑔 − 𝑔𝑛􏿎sup ≤ 1.

Since 𝑔𝑛 → 𝑔, we conclude that

􏾙
𝜋

−𝜋
𝑓𝑔𝑛 →􏾙

𝜋

−𝜋
𝑓𝑔

bydominated convergence theorem (􏿎𝑔 − 𝑔𝑛􏿎sup ≤ 1). This shows that for any simple function

𝑔, we have ℓ(𝑔) = 􏾙𝑓𝑔.
Note that

􏾙𝑓𝑔 = ℓ(𝑔) ≤ 𝑀ℓ ⋅ 􏿎𝑔􏿎𝑞
for any simple functions 𝑔 (recall that ℓ is bounded). Apply Lemma 10 on 𝑓, we conclude
that 𝑓 ∈ 𝐿𝑝. Now let 𝑔 be any functions in 𝐿𝑝 and let 𝜙𝑛 be sequence of simple functions that
converge to 𝑔 in the 𝐿𝑞 norm (this is possible since simple functions are dense in 𝐿𝑞 space).
Then

|􏾙
𝜋

−𝜋
𝑓(𝜙𝑛 − 𝑔)| ≤ 􏿎𝑓􏿎𝑝 􏿎𝜙𝑛 − 𝑔􏿎𝑞 → 0

as 𝑛 → ∞. This implies that

ℓ(𝜙𝑛) → ℓ(𝑔) and 􏾙
𝜋

−𝜋
𝑓𝜙𝑛 →􏾙

𝜋

−𝜋
𝑓𝑔
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thus
ℓ(𝑔) = 􏾙

𝜋

−𝜋
𝑓𝑔

for any 𝑔 ∈ 𝐿𝑞. This completes the proof.

Theorem 34. Let {𝑓𝑛} be a bounded sequence in 𝐿𝑝[−𝜋, 𝜋], 1 < 𝑝 ≤ ∞. That is, there exists𝑀 > 0
such that 􏿎𝑓𝑛􏿎𝑝 ≤ 𝑀 < ∞ for all 𝑛 ∈ ℕ. Then there exists a subsequence {𝑓𝑛𝑘} of {𝑓𝑛} and a function
𝑓 ∈ 𝐿𝑝 such that

lim
𝑘→∞

􏾙
𝜋

−𝜋
𝑓𝑛𝑘(𝑡)𝑔(𝑡)𝑑𝑡 = 􏾙

𝜋

−𝜋
𝑓(𝑡)𝑔(𝑡)𝑑𝑡

holds for all 𝑔 ∈ 𝐿𝑞[−𝜋, 𝜋], where 1/𝑝 + 1/𝑞 = 1. We said the sequence {𝑓𝑛𝑘} converges weakly to 𝑓 and
write 𝑓𝑛𝑘 ⇀ 𝑓.

Proof. We first sketch our proof.

Step 1: Prove that there exists a subsequence {𝑓𝑛𝑘} such that the integral

􏾙
𝜋

−𝜋
𝑓𝑛𝑘(𝑡)𝑔(𝑡)𝑑𝑡

exists for all trigonometric polynomial 𝑔with rational coefficients.

Step 2: Prove that for each 𝑔 ∈ 𝐿𝑞, the limit

lim
𝑘→∞

􏾙𝑓𝑛𝑘𝑔 exists.

Moreover, 𝑔 ↦ lim
𝑘→∞

􏾙𝑓𝑛𝑘𝑔 is a linear bounded functional.

Step 3: Apply the Riesz Representation Theorem (Theorem): Every linear bounded func-
tional on 𝐿𝑞 can be represented as 𝐿(𝑔) = 􏾉𝑓, 𝑔􏽼 for some 𝑓 ∈ 𝐿𝑝 that does not depend on the
choice of 𝑔.

We first denote all rational coefficients trigonometric polynomials by 𝐴. It is countable.
We may write 𝐴 = {𝑔𝑗}∞𝑗=1. Then we have

|􏾙𝑓𝑛 ⋅ 𝑔1| ≤ 􏿵􏾙 |𝑓𝑛|
𝑝􏿸
1/𝑝
􏿵􏾙 |𝑔1|

𝑞􏿸
1/𝑞
≤ 𝑀 ⋅ 􏿎𝑔1􏿎𝑞 < ∞.

There exists a subsequence {𝑓(1)𝑛 } of {𝑓(0)𝑛 ∶= 𝑓𝑛} such that

lim
𝑛→∞

􏾙𝑓(1)𝑛 𝑔1 exists.

We repeat this process. More precisely, suppose the subsequence {𝑓(𝑘)𝑛 } has been constructed.
Then

|􏾙𝑓(𝑘)𝑛 ⋅ 𝑔𝑘+1| ≤ 􏿵􏾙 |𝑓(𝑘)𝑛 |
𝑝
􏿸
1/𝑝
􏿵􏾙 |𝑔𝑘+1|

𝑞􏿸
1/𝑞
≤ 𝑀 ⋅ 􏿎𝑔𝑘+1􏿎𝑞 < ∞.

There exists a subsequence {𝑓(𝑘+1)𝑛 } of {𝑓(𝑘)𝑛 } such that

lim
𝑛→∞

􏾙𝑓(𝑘+1)𝑛 𝑔𝑘+1 exists.
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It is easy to see that {𝑓(𝑛)𝑛 } is a subsequence of {𝑓𝑛} and that

lim
𝑛→∞

􏾙𝑓(𝑛)𝑛 𝑔𝑘 exists for all 𝑘 ∈ ℕ.

This proves the step 1. We now write 𝑓𝑛𝑘 ∶= 𝑓
(𝑘)
𝑘 .

Now let 𝑔 ∈ 𝐿𝑞[−𝜋, 𝜋] be given and let 𝜖 > 0. Then there exists 𝑝 ∈ 𝐴 such that 􏿎𝑔 − 𝑝􏿎𝑞 < 𝜖
since 𝐴 is dense in 𝐿𝑞 (Theorem 9). Note that

lim
𝑘→∞

􏾙𝑓(𝑘)𝑘 𝑝 exists.

Hence there exists 𝑁 ∈ ℕ such that |􏾙 􏿴𝑓(𝑛)𝑛 − 𝑓(𝑚)𝑚 􏿷 𝑝| ≤ 𝜖 for all 𝑛,𝑚 ≥ 𝑁. Therefore,

|􏾙 􏿴𝑓(𝑛)𝑛 − 𝑓(𝑚)𝑚 􏿷 𝑝| ≤ |􏾙 􏿴𝑓(𝑛)𝑛 − 𝑓(𝑚)𝑚 􏿷 (𝑔 − 𝑝)| + |􏾙 􏿴𝑓(𝑛)𝑛 − 𝑓(𝑚)𝑚 􏿷 𝑝| ≤ 2𝑀 ⋅ 𝜖 + 𝜖.

This shows that the limit
lim
𝑘→∞

􏾙𝑓(𝑘)𝑘 𝑔

exists for all 𝑔 ∈ 𝐿𝑞. It is clear that the map

ℓ ∶ 𝑔 ↦ lim
𝑘→∞

􏾙𝑓𝑛𝑘𝑔

is a linear map. Observe that

|􏾙𝑓𝑛𝑘𝑔| ≤ 𝑀 ⋅ 􏿎𝑔􏿎𝑞 .

It indicates ℓ is a linear bounded functional.
It follows from the Riesz representation theorem (Theorem 33) that ℓ(𝑔) = 􏾙𝑓𝑔 for

some 𝑓 ∈ 𝐿𝑝 that does not depend on the choice of 𝑔. This proves the theorem.

The theorem above help us to prove the following necessary and sufficient condition for
a trigonometric series to be the Fourier series of an 𝐿𝑝 function 𝑓 (1 < 𝑝 ≤ ∞).

Theorem 35. Let

𝑠(𝑥) =
∞
􏾜
𝑗=−∞

𝑐𝑗𝑒𝑖𝑗𝑥 and 𝜎𝑛 = 􏾜
|𝑗|≤𝑛

⎛
⎜⎜⎜⎝1 −

|𝑗|
𝑛 + 1

⎞
⎟⎟⎟⎠ 𝑐𝑗𝑒𝑖𝑗𝑥

be a trigonometric series and its Cesàro partial sum. Then 𝑠(𝑥) is the Fourier series of a function 𝑓 ∈ 𝐿𝑝
(1 < 𝑝 ≤ ∞) if and only if

‖𝜎𝑛‖𝑝 ≤ 𝐾 < ∞.

Proof. If 𝑠(𝑥) = 𝑠(𝑓; 𝑥), then we have shown in Theorem 30 that ‖𝜎𝑛‖𝑝 ≤ 􏿎𝑓􏿎𝑝. Now suppose
‖𝜎𝑛‖𝑝 ≤ 𝐾 < ∞ for all 𝑛 ∈ ℕ. By theorem 34, there exists a subsequence {𝜎𝑛𝑘} and a function
𝑓 ∈ 𝐿𝑝 such that 𝜎𝑛𝑘 ⇀ 𝑓. Fix 𝑗 ∈ ℕ and let 𝑔(𝑡) = 𝑒−𝑖𝑗𝑡. Then we have

⎛
⎜⎜⎜⎝1 −

|𝑗|
𝑛𝑘 + 1

⎞
⎟⎟⎟⎠ 𝑐𝑗 →􏾙𝑓𝑔.

Hence
𝑐𝑗(𝑓) = 􏾙𝑓𝑔 = 𝑐𝑗.
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This shows that 𝑠(𝑥) = 𝑠(𝑓; 𝑥).

We now shall start proving that if 𝑓 ∈ 𝐿1[−𝜋, 𝜋], then 𝜎𝑛 → 𝑓 almost everywhere. This
theorem however need some preparations first.

Lemma 11. If 􏾙|𝑔𝑛 − 𝑔| → 0 as 𝑛 → ∞. Then there exists a subsequence {𝑔𝑛𝑘} such that
𝑔𝑛𝑘 → 𝑔 almost everywhere.

Proof. For all 𝛼 > 0, define

𝑋(𝛼, 𝑛) = {𝑥 ∶ |𝑔𝑛(𝑥) − 𝑔(𝑥)| > 𝛼}.

Then we have 𝑚(𝑋(𝛼, 𝑛)) ≤ 1
𝛼 􏾙 |𝑔𝑛 − 𝑔|. Let 𝛼 = 1/𝑗, 𝑗 ∈ ℕ. There exists 𝑛𝑗 ∈ ℕ such that

𝑚􏿶𝑋 􏿶
1
𝑗 , 𝑛􏿹􏿹 <

1
2𝑗

whenever 𝑛 ≥ 𝑛𝑗.

Then it is clear that 𝑔𝑛𝑗 → 𝑔 almost everywhere.

Lemma 12. If 𝑓 ∈ 𝐿1[−𝜋, 𝜋], then

􏾙
𝜖

0
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)| 𝑑𝑡 = 𝑜(𝜖)

for almost every 𝑥.

We will not prove Lemma 12 here, since it is a homework problem. We now could give
a proof to the following theorem.

Theorem 36 (Lebesgue). If 𝑓 ∈ 𝐿1[−𝜋, 𝜋], then 𝜎𝑛(𝑓; 𝑥) → 𝑓(𝑥) for almost every 𝑥.

Proof. Recall that

|𝜎𝑛(𝑓; 𝑥) − 𝑓(𝑥)| =
2
𝜋 |􏾙

𝜋

0
􏿶
𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)

2 − 𝑓(𝑥)􏿹 𝐾𝑛(𝑡)𝑑𝑡| .

Let

𝐴𝑛(𝑥) ∶= 􏾙
𝜋

1/ 4√𝑛
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝐾𝑛(𝑡)𝑑𝑡

𝐵𝑛(𝑥) ∶= 􏾙
1/𝑛

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝐾𝑛(𝑡)𝑑𝑡

𝐶𝑛(𝑥) ∶= 􏾙
1/ 4√𝑛

1/𝑛
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝐾𝑛(𝑡)𝑑𝑡

It is clear that
𝜋
2 |𝜎𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 𝐴𝑛(𝑥) + 𝐵𝑛(𝑥) + 𝐶𝑛(𝑥).

It suffices to show that for almost every 𝑥,𝐴𝑛(𝑥), 𝐵𝑛(𝑥), 𝐶𝑛(𝑥) → 0 as 𝑛 → ∞. It is worth noting
that the integral

𝑀(𝑥) ∶= 􏾙
𝜋

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝑑𝑡

exist for all 𝑥. Now we start estimate 𝐴𝑛, 𝐵𝑛, and 𝐶𝑛.
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1. Estimate 𝐴𝑛(𝑥). Recall that 𝐾𝑛(𝑡) ≤
𝜋2

2(𝑛 + 1)𝑡2 , we have

0 ≤ 𝐴𝑛(𝑥) ≤
𝜋2

2(𝑛 + 1) 􏾙
𝜋

1/ 4√𝑛
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝑑𝑡𝑡2 ≤

𝜋2
2(𝑛 + 1) ⋅ 𝑀(𝑥) ⋅ √𝑛 → 0.

This shows that 𝐴𝑛(𝑥) converges to 0 for every 𝑥.

2. Estimate 𝐵𝑛(𝑥). Recall that 𝐾𝑛(𝑡) ≤ (𝑛 + 1)/2 ≤ 𝑛, if 𝑛 ≥ 1. We have

0 ≤ 𝐵𝑛(𝑥) ≤ 𝑛 ⋅ 􏾙
1/𝑛

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝑑𝑡.

From Lemma 12, we have

𝑛 ⋅ 􏾙
1/𝑛

0
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝑑𝑡 = 𝑜(1/𝑛)

1/𝑛 → 0 as 𝑛 → ∞

for almost every 𝑥. This shows that 𝐵𝑛(𝑥) → 0 as 𝑛 → ∞ for almost every 𝑥.

3. Estimate 𝐶𝑛(𝑥). Similar to (1), we have

0 ≤ 𝐶𝑛(𝑥) ≤
𝜋2
2𝑛 􏾙

1/ 4√𝑛

1/𝑛
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝑑𝑡𝑡2 .

Define the function

𝐹𝑥(𝑡) = 􏾙
𝑡

0
|𝑓(𝑥 + 𝑠) + 𝑓(𝑥 − 𝑠)2 − 𝑓(𝑥)| 𝑑𝑠 ≤ 𝑀(𝑥).

Lebesgue’s main theorem asserts that 𝐹𝑥 viewed as a function of 𝑡 is absolutely continuous
and monotonically increasing. Integration by parts give us

1
𝑛 􏾙

1/ 4√𝑛

1/𝑛
|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)2 − 𝑓(𝑥)| 𝑑𝑡𝑡2 =

1
𝑛
𝐹𝑥(𝑡)
𝑡2 |

1/ 4√𝑛

𝑡=1/𝑛
+ 2
𝑛 􏾙

1/ 4√𝑛

1/𝑛
𝐹𝑥(𝑡)

𝑑𝑡
𝑡3

≤ 𝐹𝑥(1/ 4√𝑛)
√𝑛

− 𝑛 ⋅ 𝐹𝑥(1/𝑛) +
2
𝑛 􏾙

1/ 4√𝑛

1/𝑛
𝐹𝑥(𝑡)

𝑑𝑡
𝑡3 .

Observe that
𝐹𝑥(1/ 4√𝑛)
√𝑛

≤ 𝑀(𝑥)
√𝑛

→ 0

as 𝑛 → 0. We also have 𝑛 ⋅ 𝐹𝑥(1/𝑛) → 0 as 𝑛 → ∞ for almost every 𝑥 (Lemma 12). It now
suffices to show that for almost every 𝑥, the integral

2
𝑛 􏾙

1/ 4√𝑛

1/𝑛
𝐹𝑥(𝑡)

𝑑𝑡
𝑡3 → 0.

Lemma 12 asserts that
𝐹𝑥(𝑡)
𝑡 = 𝑜(1)

for almost every 𝑥. Fix such 𝑥, given 𝜖 > 0, there exists an 𝑁 ∈ ℕ large enough, such that
𝐹𝑥(𝑡)
𝑡 < 𝜖 whenever 𝑡 ≤ 1/ 4√𝑁. Now we have

2
𝑛 􏾙

1/ 4√𝑛

1/𝑛
𝐹𝑥(𝑡)

𝑑𝑡
𝑡3 ≤

2𝜖
𝑛 􏾙

1/ 4√𝑛

1/𝑛

𝑑𝑡
𝑡2 =

2𝜖
𝑛 ⋅ (𝑛 − 4√𝑛) ≤ 2𝜖
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whenever 𝑛 ≥ 𝑁. This shows that for almost every 𝑥, 𝐶𝑛(𝑥) → 0 as 𝑛 → ∞.

Discussions above prove the theorem.

5 The conjugate Fourier series
We now turn our attention back to 𝑠𝑛(𝑓; 𝑥), the Fourier series of 𝑓. Now we define the

conjugate Fourier series ̃𝑠𝑛(𝑓; 𝑥) of 𝑠𝑛(𝑓; 𝑥) = 𝑎0/2 +
𝑛
􏾜
𝑘=1
(𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥) defined through

̃𝑠𝑛(𝑓; 𝑥) ∶=
𝑛
􏾜
𝑘=1
(𝑎𝑘 sin 𝑘𝑥 − 𝑏𝑘 cos 𝑘𝑥).

We have

̃𝑠𝑛(𝑓; 𝑥) =
1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑘=1

sin 𝑘(𝑥 − 𝑡)

⎞
⎟⎟⎟⎟⎟⎠ 𝑑𝑡.

Similarly we may define

Definition 37 (conjugate Dirichlet kernel). The conjugate Dirichlet kernel 􏾪𝐷𝑛 is the kernel
defined by

􏾪𝐷𝑛(𝑡) ∶=
𝑛
􏾜
𝑘=1

sin (𝑘𝑡) = cos (𝑡/2) − cos (𝑛 + 1/2)𝑡
2 sin (𝑡/2) .

For simplicity, in the discussion below, we use the notation

𝜓𝑥(𝑡) ∶=
𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)

2 , 𝜙𝑥(𝑡) =
𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)

2
to denote the odd part and even part of the function 𝑓(𝑥+𝑡) = 𝑓𝑥(𝑡). Recall that Dini’s theorem
(Theorem 21) states that if

􏾙
𝜋

0

|𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡) − 2𝑓(𝑥)|
𝑡 𝑑𝑡 < ∞,

then 𝑠𝑛 → 𝑓(𝑥). Similarly, we want to find some sufficient conditions that the series ̃𝑠𝑛 or ̃𝑠♯𝑛
are convergent, where ̃𝑠♯𝑛 is defined as ( ̃𝑠𝑛 + ̃𝑠𝑛−1)/2.

Note that

̃𝑠𝑛(𝑥) =
1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑡)􏾪𝐷𝑛(𝑥 − 𝑡)𝑑𝑡 = −

1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑥 + 𝑡)􏾪𝐷𝑛(𝑡)𝑑𝑡

= − 2𝜋 􏾙
𝜋

0
(𝜓𝑥(𝑡) + 𝜙𝑥(𝑡))􏾪𝐷𝑛(𝑡)𝑑𝑡 = −

2
𝜋 􏾙

𝜋

0
𝜓𝑥(𝑡) ⋅

cos (𝑡/2) − cos (𝑛 + 1/2)𝑡
2 sin (𝑡/2) 𝑑𝑡.

Some simple calculations give

̃𝑠♯𝑛(𝑥) ∶=
1
2( ̃𝑠𝑛 + ̃𝑠𝑛−1)(𝑥) = −

2
𝜋 􏾙

𝜋

0

𝜓𝑥(𝑡)𝑑𝑡
2 tan (𝑡/2) +

2
𝜋 􏾙

𝜋

0

𝜓𝑥(𝑡) cos (𝑛𝑡)𝑑𝑡
2 tan (𝑡/2)

̃𝑠𝑛(𝑥) − ̃𝑠♯𝑛(𝑥) =
1
2( ̃𝑠𝑛 − ̃𝑠𝑛−1)(𝑥) =

−1
𝜋 􏾙

𝜋

0
𝜓𝑥(𝑡) cos (𝑛𝑡)𝑑𝑡
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If we assume that the integral􏾙
𝜋

0

𝜓𝑥(𝑡)𝑑𝑡
2 tan (𝑡/2) exists, then by Riemann-Lebesgue Theorem

(Theorem 19), we have

􏾙
𝜋

0

𝜓𝑥(𝑡) cos (𝑛𝑡)𝑑𝑡
2 tan (𝑡/2) → 0 and 􏾙

𝜋

0
𝜓𝑥(𝑡) cos (𝑛𝑡)𝑑𝑡 → 0

as 𝑛 → ∞. Thus, in this case,

̃𝑠𝑛(𝑥) → − 2𝜋 􏾙
𝜋

0

𝜓𝑥(𝑡)𝑑𝑡
2 tan (𝑡/2) .

So, it is intuitive to study whether the integral􏾙
𝜋

0

𝜓𝑥(𝑡)𝑑𝑡
2 tan (𝑡/2) exists. However, this inte-

gral might not exists (See Theorem 38). Luckily, we can consider the principal value of the

integral, that is, the limit lim
𝜖→0+

− 1𝜋 􏾙
𝜋

𝜖

𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)
2 tan (𝑡/2) 𝑑𝑡. In fact, later we will see that the

limit exists provided that 𝑓 ∈ 𝐿1[−𝜋, 𝜋].

Theorem 38 (Lusin’s Theorem). There is a continuous and periodic function 𝑓 ∈ 𝐶[−∞,∞] such
that

􏾙
𝜋

0

|𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)|
𝑡 𝑑𝑡 = +∞

for every 𝑥 ∈ [−𝜋, 𝜋].

Remark. Since this theorem is not covered in class, we will not give the proof here.

Now we can define the concept of the conjugate function.

Definition 39 (conjugate function). Given 𝑓 ∈ 𝐿1. We first consider the truncated conjugate
function. Given 0 < 𝜖 ≤ 𝜋, let

̃𝑓𝜖(𝑥) = −
1
𝜋 􏾙

𝜋

𝜖

𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)
2 tan (𝑡/2) 𝑑𝑡 = − 1𝜋 􏾙𝜖≤|𝑡|≤𝜋

𝑓(𝑥 + 𝑡)
2 tan (𝑡/2)𝑑𝑡.

Then we define the conjugate function ̃𝑓 by

̃𝑓(𝑥) = lim
𝜖→0+

− 1𝜋 􏾙
𝜋

𝜖

𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)
2 tan (𝑡/2) 𝑑𝑡.

It is clear that if the singular integral

− 1𝜋 􏾙
𝜋

0

𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)
2 tan (𝑡/2) 𝑑𝑡

exists, then
̃𝑓(𝑥) = − 1𝜋 􏾙

𝜋

0

𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)
2 tan (𝑡/2) 𝑑𝑡.

Remark. There are some books calling the map

𝑓(𝑡) ↦ 𝐻𝜖𝑓(𝑥) ∶= −
1
𝜋 􏾙

𝜋

𝜖

𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)
2 tan (𝑡/2) 𝑑𝑡 and 𝑓(𝑡) ↦ 𝐻𝑓(𝑥) = lim

𝜖→0+
𝐻𝜖𝑓(𝑥)

truncated Hilbert transform and Hilbert transform, respectively.

Now our objective now is to show that the conjugate function exists.
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Theorem 40. Suppose 𝑓 ∈ 𝐿1, then for almost every 𝑥,

�̃�𝑛(𝑥) − ̃𝑓1/𝑛(𝑥) → 0

as 𝑛 → ∞.

Here �̃�𝑛 denotes the conjugate Cesàro summation of the Fourier series. More precisely,
it is defined by the conjugate Fejer’s kernel

􏾪𝐾𝑛(𝑡) ∶=
1

𝑛 + 1

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑗=0

cos (𝑡/2) − cos (𝑛 + 1/2)𝑡
2 sin (𝑡/2)

⎞
⎟⎟⎟⎟⎟⎟⎠ (0 < |𝑡| ≤ 𝜋)

⟹ 􏾪𝐾𝑛(𝑡) −
1
2 cot

𝑡
2 =

−1
2(𝑛 + 1) sin (𝑡/2)

𝑛
􏾜
𝑗=0

cos (𝑗 + 1/2)𝑡 = − sin (𝑛 + 1)𝑡
4(𝑛 + 1) sin2(𝑡/2)

.

This gives

|􏾪𝐾𝑛(𝑡) −
1
2 cot

𝑡
2| ≤

𝐶
𝑛𝑡2 ,

where the tightest 𝐶 is about 2.47, we just simply use 𝐶 = 3. We now could give
Proof of Theorem 40. Note that

𝜋 􏿴�̃�𝑛(𝑥) − ̃𝑓1/𝑛(𝑥)􏿷 = −􏾙
1/𝑛

−1/𝑛
𝑓(𝑥 + 𝑡)􏾪𝐾𝑛(𝑡)𝑑𝑡 +􏾙

1/𝑛≤|𝑡|≤𝜋
𝑓(𝑥 + 𝑡) 􏿶

1
2 cot

𝑡
2 −

􏾪𝐾𝑛(𝑡)􏿹 𝑑𝑡.

The remaining estimation is very similar to the proof of Theorem 36. □

Corollary. If 𝑓 ∈ 𝐿2[−𝜋, 𝜋], then the conjugate ̃𝑓(𝑥) exists. Moreover,

‖ ̃𝑓‖2 < 􏿎𝑓􏿎2 . (4)

Proof. Since 𝑓 ∈ 𝐿2, we have
∞
􏾜
𝑘=−∞

|𝑐𝑘| = 􏾙 |𝑓|
2
< ∞. Note that if 𝑠(𝑓; 𝑥) =

∞
􏾜
𝑘=−∞

𝑐𝑘𝑒𝑖𝑘𝑡, then

̃𝑠(𝑓; 𝑥) =
∞
􏾜
𝑘=−∞

−𝑖 ⋅ sign(𝑘) ⋅ 𝑐𝑘𝑒𝑖𝑘𝑥. Write

̃𝑐𝑘 = −𝑖 ⋅ sign(𝑘) ⋅ 𝑐𝑘.

Then we have 􏾜
𝑘∈ℤ

| ̃𝑐𝑘|
2 < ∞. By Riesz-Fischer Theorem (Theorem 15), there is a function

𝑔 ∈ 𝐿2 such that
𝑠(𝑔) = 􏾜

𝑘∈ℤ
̃𝑐𝑘𝑒𝑖𝑘𝑡 = ̃𝑠(𝑓).

Moreover,
􏾙|𝑔|

2
= 􏾜
𝑘∈ℤ

| ̃𝑐𝑘|
2 ≤ 􏾜

𝑘∈ℤ
|𝑐𝑘|

2 ≤ 􏾙 |𝑓|
2
,

therefore 􏿎𝑔􏿎2 ≤ 􏿎𝑓􏿎2. Since ̃𝑠𝑛(𝑓) = 𝑠𝑛(𝑔), �̃�𝑛(𝑓) = 𝜎𝑛(𝑔). The theorem we just proved (Theo-
rem 40) asserts that

�̃�𝑛(𝑓; 𝑥) − ̃𝑓1/𝑛(𝑥) → 0 for almost every 𝑥.
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Lebesgue’s Theorem (Theorem 36) asserts that 𝜎𝑛(𝑔; 𝑥) − 𝑔(𝑥) → 0 for almost every 𝑥. There-
fore, we conclude that

̃𝑓1/𝑛(𝑥) → 𝑔(𝑥)
for almost every 𝑥.

Note that for any 1/(𝑛 + 1) ≤ 𝜖 < 1/𝑛, we have

̃𝑓𝜖(𝑥) − ̃𝑓1/𝑛(𝑥) ≤
1
𝜋 􏾙

1/𝑛

1/(𝑛+1)
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)2 tan (𝑡/2) | 𝑑𝑡

≤ 1
𝜋 ⋅

1
2 tan (1/2(𝑛 + 1)) 􏾙

1/𝑛

1/(𝑛+1)
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)| 𝑑𝑡

≤ 𝑛 + 1
𝜋 􏾙

1/𝑛

−1/𝑛
|𝑓(𝑥 + 𝑡)| 𝑑𝑡.

(5)

By Lebesgue’s differentiation theorem, we obtain that for almost every 𝑥,
̃𝑓𝜖(𝑥) − ̃𝑓1/𝑛(𝑥) → 0.

This shows that
̃𝑓𝜖(𝑥) → 𝑔(𝑥)

for almost every 𝑥. The inequality (4) can be seen from the fact that 𝑔 = ̃𝑓 almost everywhere
and

􏾙|𝑔|
2
≤ 􏾙 |𝑓|

2
.

We now introduce a new function called Hardy-Littlewood maximal function.

Definition 41 (Hardy-Littlewood maximal function). Given 𝑓 ∈ 𝐿1(ℝ), define its Hardy-
Littlewood maximal function

𝑓∗(𝑥) = sup
ℎ>0

1
2ℎ 􏾙

ℎ

−ℎ
|𝑓(𝑥 + 𝑡)| 𝑑𝑡.

By Lebesgue’s differentiation theorem, 𝑓∗(𝑥) ≥ 𝑓(𝑥) for almost every 𝑥.

Also, we shall write 𝜎∗(𝑓; 𝑥) = sup
𝑛≥0

|𝜎𝑛(𝑓; 𝑥)| to denote the maximal arithmetic mean

(Cesàro sum) of Fourier series. When 𝑓 ∈ 𝐿1, 𝜎∗(𝑓; 𝑥) exists almost everywhere, since 𝜎𝑛 → 𝑓
almost everywhere.

Theorem 42. The following statements are true.

1. For 1 < 𝑝 ≤ ∞, we have 􏿎𝑓∗􏿎𝑝 ≤ 𝐶𝑝 ⋅ 􏿎𝑓􏿎𝑝, where 𝐶𝑝 = 𝐶(𝑝) is a constant.

2. 𝑚({𝑥 ∶ |𝑓∗(𝑥)| > 𝛼}) ≤ 1
𝛼 􏾙 |𝑓|.

The proof is not covered in class, hence it is omitted here. However the next theorem
help us to establish some relation between 𝑓∗, 𝜎∗ and ̃𝑓.

Theorem 43. There exists 𝑐 > 0 such that the following statement are true.
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1. 𝜎∗(𝑥) ≤ 𝑐 ⋅ 𝑓∗(𝑥) for all 𝑥.

2. sup
𝑛≥1

|�̃�𝑛(𝑥) − ̃𝑓1/𝑛(𝑥)| ≤ 𝑐 ⋅ 𝑓∗(𝑥) for all 𝑥.

Proof.

1. Recall that 𝜎𝑛(𝑓; 𝑥) =
1
𝜋 􏾙

𝜋

−𝜋
𝑓(𝑥 + 𝑡)𝐾𝑛(𝑡)𝑑𝑡. If 𝑛 = 0, then it is clear that

|𝜎0(𝑓; 𝑥)| ≤
1
2𝜋 􏾙

𝜋

−𝜋
|𝑓(𝑥 + 𝑡)| 𝑑𝑡 ≤ 𝑓∗(𝑥).

For 𝑛 ≥ 1, let

𝛼𝑛 ∶= 􏾙
0≤|𝑡|≤1/𝑛

𝑓(𝑥 + 𝑡)𝐾𝑛(𝑡)𝑑𝑡 𝛽𝑛 ∶= 􏾙
1/𝑛≤|𝑡|≤𝜋

𝑓(𝑥 + 𝑡)𝐾𝑛(𝑡)𝑑𝑡.

Then,

𝛼𝑛
♡
≤ 𝑛 + 1

2 􏾙
1/𝑛

−1/𝑛
|𝑓(𝑥 + 𝑡)| 𝑑𝑡 ≤ 𝑛 + 1

𝑛 ⋅ 𝑛2 ⋅ 􏾙
1/𝑛

−1/𝑛
|𝑓(𝑥 + 𝑡)| 𝑑𝑡 ≤ 2𝑓∗(𝑥).

The inequality (♡) holds by Proposition 4. Let 𝐼𝑥(𝑡) ∶= 􏾙
𝑡

−𝑡
|𝑓(𝑥 + 𝑢)| 𝑑𝑢 be a function of 𝑡. Then

by the definition of maximal function, 𝐼𝑥(𝑡)/𝑡 ≤ 2𝑓∗(𝑥). Now, it follows by Proposition 4 again,
we have

𝛽𝑛 ≤
𝜋2

2(𝑛 + 1) 􏾙
𝜋

1/𝑛

|𝑓(𝑥 + 𝑡)| + |𝑓(𝑥 − 𝑡)|
𝑡2 𝑑𝑡 = 𝜋2

2(𝑛 + 1) 􏾙
𝜋

1/𝑛

𝐼′𝑥(𝑡)
𝑡2 𝑑𝑡

= 𝜋2
2(𝑛 + 1) 􏿶

𝐼𝑥(𝜋)
𝜋2 − 𝐼𝑥(1/𝑛)1/𝑛2 + 2􏾙

𝜋

1/𝑛

𝐼𝑥(𝑡)
𝑡3 𝑑𝑡􏿹 (Integration by parts.)

≤ 􏿵𝜋2 + 𝜋
2􏿸 𝑓∗(𝑥) + 𝜋2

𝑛 + 1 􏾙
𝜋

1/𝑛

𝐼𝑥(𝑡)
𝑡3 𝑑𝑡

≤ 􏿵𝜋2 + 𝜋
2􏿸 𝑓∗(𝑥) + 𝜋2

𝑛 + 1 ⋅ 2𝑓
∗(𝑥)􏾙

𝜋

1/𝑛

1
𝑡2𝑑𝑡

≤ 􏿵𝜋2 + 3𝜋
2􏿸 𝑓∗(𝑥).

We conclude that |𝜎𝑛(𝑓; 𝑥)| ≤ 𝑐 ⋅ 𝑓∗(𝑥) for some positive 𝑐 not depending on 𝑛.

2. The proof of this statement only need some minor modifications in the last statement
and in the proof of Theorem 40. Hence we omit the details.

Theorem 44. Let 𝑓 ∈ 𝐿2 and define

̃𝑓(∗)(𝑥) = sup
0<𝜖≤𝜋

| ̃𝑓𝜖(𝑥)| = sup
0<𝜖≤𝜋

|− 1𝜋 􏾙
𝜋

𝜖

𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)
2 tan (𝑡/2) 𝑑𝑡| .

Then
‖ ̃𝑓(∗)‖2 ≤ 𝑐 ⋅ 􏿎𝑓􏿎2 , for some 𝑐 > 0.

In the following discussion, we will replace the symbol ̃𝑓(∗)(𝑥) with 𝑔(𝑥) to avoid misunderstandings.
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Proof. We claim that there is a constant 𝜆 > 0 such that

| ̃𝑓𝜖(𝑥)| ≤ 𝜆 ⋅ 􏿴𝑓∗(𝑥) + ( ̃𝑓)∗(𝑥)􏿷 ,

for all 0 < 𝜖 ≤ 𝜋. We first consider the case of 𝜖 ∈ (0, 1/2]. Choose 𝑛 ∈ ℕ such that 1/(𝑛 + 1) ≤
𝜖 < 1/𝑛. Then, by inequality (5), we obtain

| ̃𝑓𝜖(𝑥) − ̃𝑓1/𝑛(𝑥)| ≤
𝑛 + 1
𝜋 ⋅ 2𝑛 ⋅ 𝑓

∗(𝑥) ≤ 2𝑓∗(𝑥).

The second statement of Theorem 43 states that sup
𝑛≥1

|�̃�𝑛(𝑥) − ̃𝑓1/𝑛(𝑥)| ≤ 𝜅 ⋅ 𝑓∗(𝑥) (for some

constant 𝜅 > 0), thus we obtain
̃𝑓𝜖(𝑥) ≤ (𝜅 + 2)𝑓∗(𝑥) + |�̃�𝑛(𝑥)|

≤ (𝜅 + 2)𝑓∗(𝑥) + sup
𝑛∈ℕ

|�̃�𝑛(𝑥)|

≤ (𝜅 + 2)𝑓∗(𝑥) + 𝜅 ⋅ ( ̃𝑓)∗(𝑥).

We now consider the case of 𝜖 ∈ [1/2, 𝜋]. In this case, we have

| ̃𝑓𝜖(𝑥)| ≤ 􏾙
1/2≤|𝑡|≤𝜋

| 𝑓(𝑥 + 𝑡)2 tan (𝑡/2) | 𝑑𝑡 ≤ 2􏾙0≤|𝑡|≤𝜋
|𝑓(𝑥 + 𝑡)| 𝑑𝑡 ≤ 4𝜋𝑓∗(𝑥).

Combining the above two inequalities proves the inequality we claimed, that is,

| ̃𝑓𝜖(𝑥)| ≤ 𝜆 ⋅ 􏿴𝑓∗(𝑥) + ( ̃𝑓)∗(𝑥)􏿷 .

Now we have

‖ ̃𝑓(∗)‖2 ≤ 𝜆 􏿴‖( ̃𝑓)∗‖2 + 􏿎𝑓∗􏿎2􏿷 ≤ 𝐶2𝜆 􏿴‖
̃𝑓‖2 + 􏿎𝑓􏿎2􏿷 ≤ 2𝐶2𝜆 􏿎𝑓􏿎2 ,

where 𝐶2 is the constant mentioned in Theorem 42.

Now we are going to prove the Calderón-Zygmund Lemma, which is useful in proving
the existence of conjugation in 𝐿1.

Lemma 13 (Calderón-Zygmund decomposition). Let 𝑄 be a compact interval. Assume 𝑓 ∈
𝐿1(𝑄) and 𝑓 ≥ 0. Given 𝛼 ≥ 1

|𝑄| 􏾙𝑄
𝑓. Then there exists a sequence of non-overlapping open

intervals {𝑄𝑘}∞𝑘=1 such that

1. 𝛼 < 1
|𝑄𝑘|

􏾙
𝑄𝑘
𝑓 ≤ 2𝛼, for all 𝑘.

2. 𝑓(𝑥) ≤ 𝛼, for almost every 𝑥 ∈ 𝑄 ⧵ ⨆𝑄𝑘.

3. 􏾜
𝑘
|𝑄𝑘| ≤

1
𝛼 􏾙𝑄

𝑓.

Proof. For any interval 𝐼 ⊂ 𝑄, we said
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝐼 is a type (i) interval if 1|𝐼| 􏾙𝐼
𝑓 > 𝛼

𝐼 is a type (ii) interval if 1|𝐼| 􏾙𝐼
𝑓 ≤ 𝛼

.
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Suppose 𝑄 = (𝑎, 𝑏), then let

𝐼(𝑚)ℎ ∶= 􏿶𝑎 +
𝑚 − 1
2ℎ (𝑏 − 𝑎), 𝑎 + 𝑚

2ℎ (𝑏 − 𝑎)􏿹 𝑚 = 1,… , 2ℎ.

Nowwe explain howwe choose {𝑄𝑘}∞𝑘=1 from these 𝐼(𝑚)𝑘 . First, we select all type (i) interval in
{𝐼(1)1 , 𝐼

(2)
1 }. Suppose the process has been executed ℎ rounds and 𝑘 intervals have been chosen.

Then we now choose all type (i) interval of the form 𝐼(𝑚)ℎ+1 such that

𝐼(𝑚)ℎ+1 ∩
𝑘
􏾅
𝑗=1

𝑄𝑗 = ∅.

In other words, we can use the following way to describe the process. We first divide 𝑄
equally into two open intervals 𝑄l and 𝑄r, where l, r stands for left and right. In {𝑄l, 𝑄r}, we
keep all type (i) intervals and divide all type (ii) intervals into two pieces, and repeat this
process. If 𝑄l is of type (i), then

𝛼 < 1
|𝑄l|

􏾙
𝑄l
𝑓 = |𝑄|

|𝑄l|
⋅ 1|𝑄| 􏾙𝑄

𝑓 ≤ 2𝛼.

If 𝑄l is of type (ii), then
1
|𝑄l|

􏾙
𝑄l
𝑓 ≤ 𝛼.

This inequality ensures that we can repeat the process that keep dividing type (ii) interval
into two pieces. Thus we can gets a sequence of disjoint intervals {𝑄𝑘}∞𝑘=1 (possibly a finite
sequence).

If 𝑥 ∈ 𝑄⧵⨆𝑄𝑘 and 𝑥 is not an endpoint of any 𝐼(𝑚)ℎ , then there are monotonically decreas-
ing type (ii) intervals 𝐼(𝛼(ℎ))ℎ (𝛼(ℎ) = 𝛼𝑥(ℎ) is a function of ℎ and 𝑥.) such that 𝐼(𝛼(ℎ+1))ℎ+1 ⊂ 𝐼(𝛼(ℎ))ℎ
and 𝐼(𝛼(ℎ))ℎ shrinks down to 𝑥. By Lebesgue’s differentiation theorem, we have

lim
ℎ→∞

1
|𝐼(𝛼(ℎ))ℎ |

􏾙
𝐼(𝛼(ℎ))ℎ

𝑓 = 𝑓(𝑥) ≤ 𝛼

for almost every 𝑥 ∈ 𝑄 ⧵ ⨆𝑄𝑘.
It now remains to show our choices of {𝑄𝑘} meet the third requirement. Note that

1
𝛼 􏾙𝑄𝑘

𝑓 > |𝑄𝑘| since
1
|𝑄𝑘|

􏾙
𝑄𝑘
𝑓 > 𝛼. Thus,

1
𝛼 􏾙𝑄

𝑓 ≥ 􏾜
𝑘
|𝑄𝑘| .

This proves the theorem.

Remark. Given a non-negative function 𝑓 ∈ 𝐿1[−𝜋, 𝜋]. Fix 𝛼 ≥ 1
2𝜋 􏾙

𝜋

−𝜋
𝑓. Apply Calderón-

Zygmund decomposition theorem (Theorem 13) to 𝑓, we then obtain countable disjoint in-
tervals {𝑄𝑘} such that three requirements are met. We can define 𝑔 ∈ 𝐿1[−𝜋, 𝜋] by

𝑔(𝑥) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑓(𝑥) , if 𝑥 ∈ [−𝜋, 𝜋] ⧵􏾅𝑄𝑘
1
|𝑄𝑘|

􏾙
𝑄𝑘
𝑓 , if 𝑥 ∈ 𝑄𝑘
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We then define ℎ ∈ 𝐿1[−𝜋, 𝜋] by ℎ ∶= 𝑓−𝑔. It is clear that 𝑔(𝑥) ≤ 2𝛼 for almost every 𝑥 ∈ [−𝜋, 𝜋].
𝑓 = 𝑔 + ℎ is called the Calderón-Zygmund decomposition and the function 𝑔 is often called
the “good” part of the function 𝑓 and ℎ is called the “bad” part.

Before proving the existence of conjugate function in 𝐿1, we shall prove another useful
lemma.

Lemma 14. Let 𝐹 be a closed set in [−𝜋, 𝜋] and let

𝛿(𝑥) = dist(𝑥, 𝐹) = inf
𝑦∈𝐹

|𝑥 − 𝑦| .

Then for all 𝜆 > 0, the function

𝑀𝜆(𝑥) ∶= 􏾙
𝜋

−𝜋

𝛿𝜆(𝑦)

|𝑥 − 𝑦|
1+𝜆𝑑𝑦

is finite for almost every 𝑥 ∈ 𝐹.

Proof. It is clear that

𝑀𝜆(𝑥) ∶= 􏾙
𝐺

𝛿𝜆(𝑦)

|𝑥 − 𝑦|
1+𝜆𝑑𝑦, where 𝐺 = [−𝜋, 𝜋] ⧵ 𝐹.

Then

􏾙
𝐹
𝑀𝜆(𝑥)𝑑𝑥 = 􏾙

𝐹
􏾙
𝐺

𝛿𝜆(𝑦)

|𝑥 − 𝑦|
1+𝜆𝑑𝑦𝑑𝑥 = 􏾙𝐺

𝛿𝜆(𝑦)

⎛
⎜⎜⎜⎜⎜⎝􏾙𝐹

𝑑𝑥

|𝑥 − 𝑦|
1+𝜆

⎞
⎟⎟⎟⎟⎟⎠ 𝑑𝑦

≤ 􏾙
𝐺
𝛿𝜆(𝑦) 􏿶2􏾙

∞

𝛿(𝑦)

𝑑𝑡
𝑡1+𝜆 􏿹 𝑑𝑦 = 􏾙𝐺

𝛿𝜆(𝑦) ⋅ 2
𝜆𝛿𝜆(𝑦)𝑑𝑦 =

2𝑚(𝐺)
𝜆 .

We can exchange the order of integration at the second equality because of Tonelli’s theorem.
This inequality shows that𝑀𝜆(𝑥) is finite for almost every 𝑥 ∈ 𝐹 (𝑀𝜆 ∈ 𝐿1(𝐹)).

We now can prove the following theorem.

Theorem 45 (The existence of conjugate function in 𝐿1). Let 𝑓 ∈ 𝐿1[−𝜋, 𝜋]. Then the conjugate
of 𝑓 exists. In other words, the limit lim

𝜖→0
̃𝑓𝜖(𝑥) exists for almost every 𝑥 ∈ [−𝜋, 𝜋]. Moreover, the

Hilbert transform is weak (1, 1), that is,

|{𝑥 ∶ |𝐻𝑓(𝑥)| > 𝛼}| ≤ 𝐶
𝛼 􏾙

𝜋

−𝜋
𝑓

for some constant 𝐶.

Proof. We first prove the existence of the conjugate function. Without loss of generality, as-
sume 𝑓 ≥ 0. We have defined the Calderón-Zygmund decomposition of 𝑓. Let 𝑓 = 𝑔 + ℎ be
the decomposition, where 𝑔 is the good part of 𝑓 and ℎ is the bad part. Since 𝑔 ∈ 𝐿∞[−𝜋, 𝜋] ⊂
𝐿2[−𝜋, 𝜋], it follows from Corollary 5 that �̃� exists. We now show that ℎ̃ exists.

Given 𝜖 > 0. Let 𝑄∗
𝑘 ∶= 2 int(𝑄𝑘). (For an open interval 𝐼 = (𝑟, 𝑠), we write 2𝐼 to denote

the interval ((3𝑎 + 𝑏)/2, (𝑎 + 3𝑏)/2).) Also we use 𝑄∗ to denote the open set 􏾌𝑄∗
𝑘 and 𝑃∗ =

[−𝜋, 𝜋] ⧵ 𝑄∗. We now claim that ℎ̃(𝑥) exists for almost every 𝑥 ∈ 𝑃∗.
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Let 𝑥 ∈ 𝑃∗ be fixed. Recall the definition of ℎ, we have

ℎ(𝑡) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 , if 𝑡 ∈ [−𝜋, 𝜋] ⧵􏾅𝑄𝑘

𝑓(𝑡) − 1
|𝑄𝑘|

􏾙
𝑄𝑘
𝑓 , if 𝑡 ∈ 𝑄𝑘

Hence ℎ vanishes outside⋃𝑄𝑘. Let 𝐴, 𝐵 be subset ofℕ defined by

𝐴 ∶= {𝑖 ∈ ℕ ∶ 𝑄𝑖 ∩ (𝑥 − 𝜖, 𝑥 + 𝜖) = ∅}
𝐵 ∶= {𝑖 ∈ ℕ ∶ 𝑄𝑖 ∩ {𝑥 − 𝜖, 𝑥 + 𝜖} ≠ ∅}

Then
2𝜋 ⋅ ℎ̃𝜖(𝑥) = 􏾙

𝜖≤|𝑥−𝑡|≤𝜋
ℎ(𝑡) cot 􏿵𝑥 − 𝑡2

􏿸𝑑𝑡

= 􏾜
𝑖∈𝐴

􏾙
𝑄𝑖
ℎ(𝑡) cot 􏿵𝑥 − 𝑡2

􏿸𝑑𝑡 +􏾜
𝑖∈𝐵
􏾙
𝑄𝑖
ℎ(𝑡) cot 􏿵𝑥 − 𝑡2

􏿸𝑑𝑡.

We now estimate the second term. If some 𝑄𝑘 contains 𝑥 + 𝜖, then 𝜖 ≥ dist(𝑥,𝑄𝑘) ≥ 𝑑𝑘/2,
where 𝑑𝑘 is defined to be |𝑄𝑘|. (If the inequality does not hold, then 𝑥 ∉ 𝑃∗.) Then

􏾙
𝑄𝑘
|ℎ(𝑡) cot 􏿵𝑥 − 𝑡2

􏿸| 𝑑𝑡 ≤ 􏾙
𝑥+𝜖+𝑑𝑘

𝑥+𝜖
|2ℎ(𝑡)𝑥 − 𝑡 | 𝑑𝑡 ≤

2
𝜖 􏾙

𝑥+3𝜖

𝑥+𝜖
|ℎ(𝑡)| 𝑑𝑡 = 2

𝜖 􏾙
2𝜖

0
|ℎ(𝑥 + 𝑡)| 𝑑𝑡.

By Lebesgue’s differentiation theorem,

􏾙
𝑄𝑘
ℎ(𝑡) cot 􏿵𝑥 − 𝑡2

􏿸𝑑𝑡 → |ℎ(𝑥)| = 0, as 𝜖 → 0

for almost every 𝑥 ∈ 𝑃∗.
Now we give the estimation of the first term. Let 𝑘 ∈ 𝐴. We also write 𝑑𝑘 = |𝑄𝑘| and let

𝑡𝑘 denote the midpoint of 𝑄𝑘. Note that􏾙
𝑄𝑘
ℎ(𝑡)𝑑𝑡 = 0. Therefore,

􏾙
𝑄𝑘
|ℎ(𝑡) cot 􏿵𝑥 − 𝑡2

􏿸| 𝑑𝑡 = 􏾙
𝑄𝑘
|ℎ(𝑡) 􏿵cot 􏿵𝑥 − 𝑡2

􏿸 − cot 􏿵𝑥 − 𝑡𝑘2
􏿸􏿸| 𝑑𝑡

= 􏾙
𝑄𝑘
􏵵ℎ(𝑡)

sin 􏿴(𝑡 − 𝑡𝑘)/2􏿷
sin 􏿴(𝑥 − 𝑡)/2􏿷 sin 􏿴(𝑥 − 𝑡𝑘)/2􏿷

􏵵 𝑑𝑡

≤ 𝑑𝑘
4 􏾙𝑄𝑘

|ℎ(𝑡)|
|sin 􏿴(𝑥 − 𝑡)/2􏿷| ⋅ |sin 􏿴(𝑥 − 𝑡𝑘)/2􏿷|

𝑑𝑡

♢
≤ 2𝜋2𝑑𝑘
(𝑥 − 𝑡𝑘)2

􏾙
𝑄𝑘
|ℎ(𝑡)| 𝑑𝑡.

The inequality (♢) holds by |sin 𝑥| ≥ 2 |𝑥|
𝜋 for all 𝑥 ∈ [−𝜋/2, 𝜋/2] and the fact that

1
2 |𝑥 − 𝑡𝑘| ≤ |𝑥 − 𝑡| ≤

3
2 |𝑥 − 𝑡𝑘| . (6)

Observe that

􏾙
𝑄𝑘
|ℎ(𝑡)| 𝑑𝑡 ≤ 􏾙

𝑄𝑘
􏵶𝑓(𝑡) −

1
|𝑄𝑘|

􏾙
𝑄𝑘
𝑓􏵶 𝑑𝑡 ≤ 2􏾙

𝑄𝑘
𝑓(𝑡)𝑑𝑡 ≤ 2 |𝑄𝑘|

1
|𝑄𝑘|

􏾙
𝑄𝑘
𝑓 ≤ 4𝛼 |𝑄𝑘| .

Now let 𝛿(𝑡) = dist(𝑡, 𝑃∗). It is clear that 𝛿(𝑡) ≥ 𝑑𝑘/2 for all 𝑡 ∈ 𝑄𝑘. Summarizing the results
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obtained above, we have

􏾙
𝑄𝑘
|ℎ(𝑡) cot 􏿵𝑥 − 𝑡2

􏿸| 𝑑𝑡 ≤ 8𝛼𝜋2𝑑𝑘 |𝑄𝑘|
(𝑥 − 𝑡𝑘)2

≤ 16𝛼𝜋2
(𝑥 − 𝑡𝑘)2

􏾙
𝑄𝑘
𝛿(𝑡)𝑑𝑡 ≤ 36𝛼𝜋2􏾙

𝑄𝑘

𝛿(𝑡)
|𝑥 − 𝑡|2

𝑑𝑡.

Here we have used the inequality (6).
By Lemma 14, we have

lim
𝜖→0+

􏾜
𝑖∈𝐴

􏾙
𝑄𝑖
|ℎ(𝑡) cot 􏿵𝑥 − 𝑡2

􏿸| 𝑑𝑡 ≤ 36𝛼𝜋2 lim
𝜖→0+

􏾜
𝑖∈𝐴

􏾙
𝑄𝑖

𝛿(𝑡)
|𝑥 − 𝑡|2

𝑑𝑡 ≤ 􏾙
𝑄∗

𝛿(𝑡)
|𝑥 − 𝑡|2

𝑑𝑡 < ∞

for almost every 𝑥 ∈ 𝑃∗. Thus ℎ̃(𝑥) exists for almost every 𝑥 ∈ 𝑃∗.
However, it is worth noting that the closed set 𝑃∗might be larger when 𝛼 becomes larger.

Therefore it now suffices to show that

|𝑃∗| → 2𝜋 as 𝛼 → ∞.

It follows by the fact that

|𝑄∗| = |􏾌𝑄∗
𝑘| ≤ 2􏾜 |𝑄𝑘| ≤

2
𝛼 􏾙

𝜋

−𝜋
𝑓 → 0

as 𝛼 → ∞.
We now show that the Hilbert transform 𝑓 ↦ ̃𝑓 is weak (1, 1). It is clear that

{𝑥 ∶ | ̃𝑓(𝑥)| > 𝛼} ⊆ {𝑥 ∶ |�̃�(𝑥)| > 𝛼/2} ∪ {𝑥 ∶ |ℎ̃(𝑥)| > 𝛼/2}.

Firstly, we have

𝑚􏿴{𝑥 ∶ |�̃�(𝑥)| > 𝛼/2}􏿷 ≤ 4
𝛼2 􏾙|�̃�|

2
≤ 4
𝛼2 􏾙|𝑔|

2
≤ 8
𝛼 􏾙 |𝑔| ≤ 8

𝛼 􏾙 |𝑓| .

Now let 𝑆 ∶= {|�̃�| > 𝛼/2}. Then it is clear that 𝑆 = (𝑆∩𝑃∗) ⊔ (𝑆 ∩𝑄∗) (𝑃∗ ⊔𝑄∗ = [−𝜋, 𝜋]). By the
requirements of {𝑄𝑘},

𝑚(𝑆 ∩ 𝑄∗) ≤ 𝑚(𝑄∗) ≤ 2􏾜 |𝑄𝑘| ≤
2
𝛼 􏾙 |𝑓| .

We have just shown that

|ℎ̃(𝑥)| ≤ 36𝛼𝜋2􏾙
𝑄𝑘

𝛿(𝑡)
|𝑥 − 𝑡|2

𝑑𝑡 ∶= 36𝛼𝜋2𝑀(𝑥)

for almost every 𝑥 ∈ 𝑃∗. Thus, for almost every 𝑥 ∈ 𝑆 ∩ 𝑃∗,

𝑥 ∈ 􏿼𝑝 ∶ 𝑀(𝑝) ≥
1

72𝜋2􏿿 .

In other words, we have 𝑆 ∩ 𝑃∗ ⊂ {𝑝 ∶ 𝑀(𝑝) ≥ 1/72𝜋2} except for a zero set. We conclude that

𝑚(𝑆 ∩ 𝑃∗) ≤ 1
𝐴 􏾙

𝑃∗
𝑀(𝑥)𝑑𝑥 ≤ 2 |𝑄∗|

𝐴 ≤ 4
𝐴 ⋅ 𝛼 􏾙 |𝑓| ,

where𝐴 is the constant 1/72𝜋2. (The second inequality holds by Lemma 14.) This completes
the proof.
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6 Fourier transform on ℝ𝑛

Definition 46 (Fourier transform). Given 𝑓 ∈ 𝐿1. We define its Fourier transform 􏾦𝑓(𝜉) by

􏾦𝑓(𝜉) ∶= 􏾙
ℝ𝑛
𝑒−2𝜋𝑖⟨𝑥,𝜉⟩𝑓(𝑥)𝑑𝑥,

where ⟨𝜉, 𝑥⟩ is the standard inner product on ℝ𝑛.

Proposition 5. The following statements are true.

1. 􏾩𝑓+ 𝑔 = 􏾦𝑓 + 􏾦𝑔.

2. 􏾧𝑐𝑓 = 𝑐 􏾦𝑓, where 𝑐 is a constant.

3. If 𝑓 ∈ 𝐿1(ℝ2), then 􏾦𝑓 is continuous.

Proof. The first two properties are trivial. To show 􏾦𝑓 is continuous, we consider the difference

| 􏾦𝑓(𝜉 + ℎ) − 􏾦𝑓(𝜉)|.

By the definition and the inequality |𝑒𝑖𝜃 − 1| ≤ 𝜃,

| 􏾦𝑓(𝜉 + ℎ) − 􏾦𝑓(𝜉)| = |􏾙
ℝ𝑛
𝑓(𝑥)𝑒−2𝜋𝑖⟨𝑥,𝜉⟩ 􏿴𝑒−2𝜋𝑖⟨𝑥,ℎ⟩ − 1􏿷 𝑑𝑥|

≤ 􏾙
ℝ𝑛
|𝑓(𝑥)|min {2𝜋 ⋅ |ℎ| ⋅ |𝑥| , 2}𝑑𝑥

Given 𝜖 > 0, there is𝑀 > 0 such that

􏾙
|𝑥|≥𝑀

|𝑓(𝑥)| 𝑑𝑥 < 𝜖.

This implies that

􏾙
|𝑥|≥𝑀

|𝑓(𝑥)|min {2𝜋 ⋅ |ℎ| ⋅ |𝑥| , 2}𝑑𝑥 < 2𝜖.

Note that
􏾙
|𝑥|≤𝑀

|𝑓(𝑥)|min {2𝜋 ⋅ |ℎ| ⋅ |𝑥| , 2}𝑑𝑥 ≤ 2𝜋𝑀􏾙
|𝑥|≤𝑀

|𝑓(𝑥)| ⋅ |ℎ| 𝑑𝑥 < 𝜖

when ℎ is small enough. Therefore, for small enough ℎ > 0, we have

| 􏾦𝑓(𝜉 + ℎ) − 􏾦𝑓(𝜉)| < 3𝜖.

This completes the proof.

Theorem 47 (Riemann-Lebesgue Theorem revisited). Let 𝑓 ∈ 𝐿2, then | 􏾦𝑓(𝜉)| → 0 as |𝜉| → ∞.

Proof. Use the substitution 𝑥 = 𝑦 + 𝜉
2 |𝜉|2

in the integration, then we obtain

􏾦𝑓(𝜉) = 􏾙
ℝ𝑛
𝑒−2𝜋𝑖⟨𝑥,𝜉⟩𝑓(𝑥)𝑑𝑥 = 􏾙

ℝ𝑛
𝑒−2𝜋𝑖􏾉𝑦,𝜉􏽼𝑒

−𝜋𝑖 |𝜉|
2

|𝜉|2 𝑓 􏿶𝑦 +
𝜉

2 |𝜉|2
􏿹 𝑑𝑦.

Thus, we have

􏾦𝑓(𝜉) = 1
2 􏾙ℝ𝑛

𝑒−2𝜋𝑖⟨𝑥,𝜉⟩ 􏿶𝑓(𝑥) − 𝑓 􏿶𝑥 +
𝜉

2 |𝜉|2
􏿹􏿹 𝑑𝑥.
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By the continuity of 𝐿1 functions, we conclude

| 􏾦𝑓(𝜉)| → 0 as |𝜉| → 0.

This completes the proof.

Remark. It is worth noting that the continuity of 𝐿𝑝 functions (Theorem 29) only holds for
functions in 𝐿𝑝[−𝜋, 𝜋], however some slight modifications may apply to the original argu-
ments and made the theorem true for functions 𝑓 ∈ 𝐿𝑝(ℝ).

Definition 48 (Convolution). Given two functions 𝑓 and 𝑔. We define 𝑓 ∗𝑔 to be the function

𝑓 ∗ 𝑔(𝑥) = 􏾙
ℝ𝑛
𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦.

Proposition 6.

1. 􏾨𝑓 ∗ 𝑔 = 􏾦𝑓 ⋅ 􏾦𝑔.

2. Let 𝜂 ∈ ℝ𝑛. Define 𝜏𝜂𝑓(𝑥) ∶= 𝑓(𝑥 − 𝜂). Then

􏾨𝜏𝜂𝑓(𝜉) = 𝑒−2𝜋𝑖􏾉𝜉,𝜂􏽼 􏾦𝑓(𝜉).

3. 􏷿𝑒2𝜋𝑖􏾉𝜂,𝑥􏽼𝑓(𝜉) = 𝜏𝜂 􏾦𝑓(𝜉).

4. 􏾩(𝐷𝛼𝑓)(𝜉) = (2𝜋𝑖𝜉)𝛼 􏾦𝑓(𝜉).

5. 􏷿(−2𝜋𝑖𝜉)𝛼𝑓(𝜉) = 𝐷𝛼 􏾦𝑓(𝜉).

Proof. Weonly prove the first statement. The second and the third statement can be seen from
direct calculation, and the fourth and fifth statement can be seen fromperforming integration
by parts on the integral. Note that

􏾨𝑓 ∗ 𝑔(𝜉) = 􏾙
ℝ𝑛
𝑓 ∗ 𝑔(𝜉)𝑒−2𝜋𝑖⟨𝑥,𝜉⟩𝑑𝑥 = 􏾙

ℝ𝑛
􏾙
ℝ𝑛
𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑒−2𝜋𝑖⟨𝑥,𝜉⟩𝑑𝑦𝑑𝑥

= 􏿶􏾙
ℝ𝑛
𝑓(𝑦)𝑒−2𝜋𝑖􏾉𝑦,𝜉􏽼𝑑𝑦􏿹 􏿶􏾙

ℝ𝑛
𝑔(𝑥 − 𝑦)𝑒−2𝜋𝑖􏾉𝑥−𝑦,𝜉􏽼𝑑𝑥􏿹 = 􏾦𝑓(𝜉) ⋅ 􏾦𝑔(𝜉).

This proves the first assertion.

Lemma 15. Let 𝑓(𝑥) = 𝑒−𝜋|𝑥|
2
. Then 􏾦𝑓(𝜉) = 𝑒−𝜋|𝜉|

2
.

Proof. We shall only give the case of 𝑛 = 1. By Proposition 6, we have

( 􏾦𝑓)′(𝜉) = 􏷿􏿴−2𝜋𝑖𝑥 ⋅ 𝑓􏿷(𝜉) = 􏷿􏿴−2𝜋𝑖𝑥𝑒−𝜋𝑥2􏿷(𝜉) = 𝑖􏾧𝑓′(𝜉)

= 𝑖(2𝜋𝑖𝜉) 􏾦𝑓(𝜉).

This implies that
( 􏾦𝑓)′(𝜉) = −2𝜋𝜉 􏾦𝑓(𝜉).

Solving this differential equation gives us 􏾦𝑓(𝜉) = 𝑐𝑒−𝜋𝜉2 , where 𝑐 ∈ ℝ is a constant. We could
obtain 𝑐 = 1 by considering 􏾦𝑓(0). Similar arguments hold for general 𝑛 ∈ ℕ.

We now could introduce the concept of the inverse Fourier transform. As the word
implies, we later shall show that this is the inverse of the Fourier transform.
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Definition 49 (inverse Fourier transform). Given 𝑓 ∈ 𝐿1. We define the inverse Fourier trans-
form ̃𝑓 of 𝑓 by

̃𝑓(𝑥) = 􏾙
ℝ𝑛
𝑒2𝜋𝑖⟨𝜉,𝑥⟩𝑓(𝜉)𝑑𝜉.

Theorem 50 (Fourier integrals theorem). Suppose 𝑓 ∈ 𝐿1 and the Fourier transform 􏾦𝑓 of 𝑓 exists
in 𝐿1. Then �̃�𝑓 = 𝑓 = �̃�𝑓 almost everywhere.

Before we prove this theorem, we shall prove some useful lemmas.

Lemma 16. Suppose 𝑓, 𝑔 ∈ 𝐿1 and the Fourier transforms 􏾦𝑓, 􏾦𝑔 of 𝑓, 𝑔 exist. Then

􏾙 􏾦𝑓𝑔 = 􏾙𝑓􏾦𝑔.

Proof. It follows by

􏾙
ℝ𝑛

􏾦𝑓(𝜉)𝑔(𝜉)𝑑𝜉 = 􏾙
ℝ𝑛
􏾙
ℝ𝑛
𝑒−2𝜋𝑖⟨𝑥,𝜉⟩𝑓(𝑥)𝑑𝑥𝑔(𝜉)𝑑𝜉 = 􏾙

ℝ𝑛
𝑓(𝑥)􏾦𝑔(𝑥)𝑑𝑥.

It is worth noting that the second equality holds by the Fubini’s Theorem.

Lemma 17 (Minkowski’s inequality). Let 1 ≤ 𝑝 < ∞. Suppose 𝑓 ∶ ℝ𝑛 × ℝ𝑛 → ℝ is a measur-
able function, then

⎛
⎜⎜⎜⎝􏾙

ℝ𝑛
􏿶􏾙

ℝ𝑛
|𝑓(𝑥, 𝑦)| 𝑑𝑥􏿹

𝑝

𝑑𝑦
⎞
⎟⎟⎟⎠
1/𝑝

≤ 􏾙
ℝ𝑛
􏿶􏾙

ℝ𝑛
|𝑓(𝑥, 𝑦)|

𝑝
𝑑𝑦􏿹

1/𝑝

𝑑𝑥.

Proof. We may assume 𝑓 ≥ 0. The left side to the power of 𝑝 is

𝐼 ∶= 􏾙
ℝ𝑛
􏿶􏾙

ℝ𝑛
𝑓(𝑥, 𝑦)𝑑𝑥􏿹

𝑝

𝑑𝑦 = 􏾙
ℝ𝑛
􏿶􏾙

ℝ𝑛
𝑓(𝑡, 𝑦)𝑑𝑡􏿹

𝑝−1

􏿶􏾙
ℝ𝑛
𝑓(𝑥, 𝑦)𝑑𝑥􏿹 𝑑𝑦.

Let 𝐹(𝑦) ∶= 􏾙
ℝ𝑛
𝑓(𝑡, 𝑦)𝑑𝑡. Then 𝐼 = 􏾙

ℝ𝑛
𝐹(𝑦)𝑝−1𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 by Tonelli’s Theorem. Applying

Hölder’s inequality, we obtain

𝐼 ≤ 􏾙
ℝ𝑛
􏿶􏾙

ℝ𝑛
𝐹(𝑦)𝑝𝑑𝑦􏿹

(𝑝−1)/𝑝

􏿶􏾙
ℝ𝑛
𝑓(𝑥, 𝑦)𝑝𝑑𝑦􏿹

1/𝑝

𝑑𝑥

= 􏿶􏾙
ℝ𝑛
𝐹(𝑦)𝑝𝑑𝑦􏿹

(𝑝−1)/𝑝

⋅ 􏾙
ℝ𝑛
􏿶􏾙

ℝ𝑛
𝑓(𝑥, 𝑦)𝑝𝑑𝑦􏿹

1/𝑝

𝑑𝑥

=
⎛
⎜⎜⎜⎝􏾙

ℝ𝑛
􏿶􏾙

ℝ𝑛
𝑓(𝑥, 𝑦)𝑑𝑥􏿹

𝑝

𝑑𝑦
⎞
⎟⎟⎟⎠
(𝑝−1)/𝑝

⋅ 􏾙
ℝ𝑛
􏿶􏾙

ℝ𝑛
𝑓(𝑥, 𝑦)𝑝𝑑𝑦􏿹

1/𝑝

𝑑𝑥.

This implies that 𝐼1/𝑝 ≤ 􏾙
ℝ𝑛
􏿶􏾙

ℝ𝑛
𝑓(𝑥, 𝑦)𝑝𝑑𝑦􏿹

1/𝑝

𝑑𝑥, which proves the lemma.

Lemma 18. Let 𝜑 ∈ 𝐿1 such that􏾙|𝜑(𝑥)| 𝑑𝑥 = 𝑎. Suppose 𝑓 ∈ 𝐿𝑝 (1 ≤ 𝑝 < ∞), then

􏿎𝑓 ∗ 𝜑𝑡 − 𝑎𝑓􏿎𝑝 → 0 as 𝑡 → 0,

where 𝜑𝑡(𝑥) ∶= 𝑡−𝑛𝜑(𝑥/𝑡). In other words, 𝑓 ∗ 𝜑𝑡 → 𝑎𝑓 in 𝐿𝑝.
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Proof. Note that

𝑓 ∗ 𝜑𝑡(𝑥) − 𝑎𝑓(𝑥) = 􏾙
ℝ𝑛
􏿴𝑓(𝑥 − 𝑦) − 𝑓(𝑥)􏿷 𝜑𝑡(𝑦)𝑑𝑦

= 􏾙
ℝ𝑛
􏿴𝑓(𝑥 − 𝑡𝑧) − 𝑓(𝑥)􏿷 𝜑(𝑧)𝑑𝑧 (𝑧 = 𝑦/𝑡).

We now apply Minkowski’s inequality (Lemma 17), then we can see that

􏿎𝑓 ∗ 𝜑𝑡 − 𝑎𝑓􏿎𝑝 = 􏿶􏾙ℝ𝑛
|𝑓 ∗ 𝜑𝑡(𝑥) − 𝑎𝑓(𝑥)|

𝑝
𝑑𝑥􏿹

1/𝑝

= 􏿶􏾙
ℝ𝑛
|􏾙
ℝ𝑛
􏿴𝑓(𝑥 − 𝑡𝑧) − 𝑓(𝑥)􏿷 𝜑(𝑧)𝑑𝑧|

𝑝
𝑑𝑥􏿹

1/𝑝

≤ 􏾙
ℝ𝑛
􏿶􏾙

ℝ𝑛
|𝑓(𝑥 − 𝑡𝑧) − 𝑓(𝑥)|

𝑝
|𝜑(𝑧)|

𝑝
𝑑𝑥􏿹

1/𝑝

𝑑𝑧

= 􏿎𝜏𝑡𝑧𝑓 − 𝑓􏿎𝑝 ⋅ 􏾙ℝ𝑛
|𝜑(𝑧)| 𝑑𝑧

= 𝑎 ⋅ 􏿎𝜏𝑡𝑧𝑓 − 𝑓􏿎 → 0

We have used the fact that the translation is continuous in 𝐿𝑝, that is,

􏿎𝜏𝑡𝑓 − 𝑓􏿎 → 0 as 𝑡 → 0

for any 𝑓 ∈ 𝐿𝑝. In fact, we have proved this before, for more information, please refer to
Theorem 29. It is worth noting that some modifications of the proof need to be make since
the proof only shows the case of 𝑓 ∈ 𝐿𝑝[−𝜋, 𝜋], 𝑓 ∈ 𝐿𝑝(ℝ𝑛) is not included.

We now can give the proof of Theorem 50.
Proof of Theorem 50. Let 𝑡 > 0 be a parameter and let 𝑥 ∈ ℝ𝑛 be fixed. Define

𝜙(𝜉) = exp 􏿴2𝜋𝑖 ⟨𝑥, 𝜉⟩ − 𝜋𝑡2 |𝜉|2􏿷.

Then
􏾧𝜙(𝑦) = 􏾙

ℝ𝑛
𝑒−2𝜋𝑖􏾉𝜉,𝑦􏽼𝜙(𝜉)𝑑𝜉

= 􏾙
ℝ𝑛

exp 􏿴−2𝜋𝑖 􏾉𝜉, 𝑦 − 𝑥􏽼 − 𝜋𝑡2 |𝜉|2􏿷𝑑𝜉

= 𝑡−𝑛 exp

⎛
⎜⎜⎜⎜⎜⎝
−𝜋 |𝑥 − 𝑦|

2

𝑡2

⎞
⎟⎟⎟⎟⎟⎠.

We have used the fact that 􏾦𝑓(𝜉) = 𝑎−𝑛/2𝑒−𝜋|𝜉|
2/𝑎, provided that 𝑓(𝑥) = 𝑒−𝜋𝑎|𝑥|

2
. Let 𝑔𝑡(𝑥 − 𝑦) ∶=

𝑡−𝑛 exp

⎛
⎜⎜⎜⎜⎜⎝
−𝜋 |𝑥 − 𝑦|

2

𝑡2

⎞
⎟⎟⎟⎟⎟⎠. Then by Lemma 16 and Lemma 18, we have

􏾙
ℝ𝑛

exp 􏿴2𝜋𝑖 ⟨𝑥, 𝜉⟩ − 𝜋𝑡2 |𝜉|2􏿷 􏾦𝑓(𝜉)𝑑𝜉 = 􏾙
ℝ𝑛
𝑓(𝑦)𝑔𝑡(𝑥 − 𝑦)𝑑𝑦 → 𝑓 in 𝐿1,

as 𝑡 → 0. Using the Lebesgue’s dominated convergence theorem, we have

lim
𝑡→0

􏾙
ℝ𝑛

exp 􏿴2𝜋𝑖 ⟨𝑥, 𝜉⟩ − 𝜋𝑡2 |𝜉|2􏿷 􏾦𝑓(𝜉)𝑑𝜉 = 􏾙
ℝ𝑛

lim
𝑡→0

exp 􏿴2𝜋𝑖 ⟨𝑥, 𝜉⟩ − 𝜋𝑡2 |𝜉|2􏿷 􏾦𝑓(𝜉)𝑑𝜉 = �̃�𝑓(𝑥).
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We conclude that ‖ �̃�𝑓 − 𝑓‖1 = 0, therefore �̃�𝑓(𝑥) = 𝑓(𝑥) for almost every 𝑥. □

Remark. Although this proof seems quite reasonable, there are some details I do not com-
pletely accept. We have shown that 𝑓 ∗ 𝑔𝑡 → 𝑓 in 𝐿1, and 𝑓 ∗ 𝑔𝑡(𝑥) → �̃�𝑓(𝑥) for almost every 𝑥.
This does not implies that ‖ �̃�𝑓 − 𝑓‖1 = 0. However, this is the note I wrote in class, so I choose
to believe it.

The next theorem associate the Fourier transform and the Fourier series, this theorem is
known as Poisson’s summation formula.

Theorem 51 (Poisson’s summation formula). Given 𝑓 ∈ 𝔖(ℝ𝑛). Then

􏾜
𝑘∈ℤ𝑛

𝑓(𝑥 − 𝑘) = 􏾜
𝑘∈ℤ𝑛

􏾦𝑓(𝑘)𝑒2𝜋𝑖⟨𝑘,𝑥⟩

for all 𝑥. In particular, if we plug in 𝑥 = 0 to the formula, we then obtain

􏾜
𝑘∈ℤ𝑛

𝑓(𝑘) = 􏾜
𝑘∈ℤ𝑛

􏾦𝑓(𝑘).

We shall also prepare a lemma.

Lemma 19. If 𝑓 ∈ 𝐿1(ℝ𝑛), then 􏾜
𝑘∈ℤ𝑛

𝑓(𝑥 − 𝑘) converges almost everywhere on [0, 1]. Moreover,

if we let 𝒫𝑓(𝑥) ∶= 􏾜
𝑘∈ℤ𝑛

𝑓(𝑥 − 𝑘), then 𝒫𝑓 ∈ 𝐿1[0, 1] and

􏿎𝒫𝑓􏿎𝐿1[0,1] ≤ 􏿎𝑓􏿎𝐿1(ℝ𝑛) .

Proof. We shall just prove that 𝒫𝑓 is integrable, then the summation is finite almost every-
where. Also, we may assume that 𝑓 ≥ 0. Note that

􏾙
1

0
􏾜
𝑘∈ℤ𝑛

𝑓(𝑥 − 𝑘)𝑑𝑥 = 􏾜
𝑘∈ℤ𝑛

􏾙
1

0
𝑓(𝑥 − 𝑘)𝑑𝑥 = 􏾜

𝑘∈ℤ𝑛
􏾙

𝑘+1

𝑘
𝑓(𝑥)𝑑𝑥 = 􏾙

ℝ𝑛
𝑓(𝑥)𝑑𝑥.

Now the lemma follows.

Remark. In fact, I remembered that this is a problem in the final exam of last semester. More-
over, if 𝑓 ∈ 𝔖(ℝ𝑛) then∑𝑘∈ℤ𝑛 𝑓(𝑥 − 𝑘) converges for almost everywhere.

Proof of Theorem 51. We apply Lemma 19, we obtain a function𝒫𝑓 ∈ 𝐿1[0, 1]. We can compute
its Fourier series.

􏾨𝒫𝑓(𝑘0) = 􏾙
1

0
􏾜
𝑘∈ℤ𝑛

𝑒−2𝜋𝑖􏾉𝑘0,𝑥􏽼𝑓(𝑥 − 𝑘)𝑑𝑥

= 􏾜
𝑘∈ℤ𝑛

􏾙
−𝑘+1

−𝑘
𝑒−2𝜋𝑖􏾉𝑘0,𝑥+𝑘􏽼𝑓(𝑥)𝑑𝑥

= 􏾙
ℝ𝑛
𝑒−2𝜋𝑖􏾉𝑘0,𝑥􏽼𝑓(𝑥)𝑑𝑥 = 􏾦𝑓(𝑘0).

It now suffices to show that 􏾜
𝑘∈ℤ𝑛

| 􏾦𝑓(𝑘)| < ∞. If this is true, then we can conclude that the

Fourier coefficients of
𝒫𝑓 and 􏾜

𝑘∈ℤ𝑛
􏾦𝑓(𝑘)𝑒2𝜋𝑖⟨𝑘,𝑥⟩
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are the same, and thus two functions are equal, namely,

􏾜
𝑘∈ℤ𝑛

𝑓(𝑥 − 𝑘) = 􏾜
𝑘∈ℤ𝑛

􏾦𝑓(𝑘)𝑒2𝜋𝑖⟨𝑘,𝑥⟩.

The claim that 􏾜
𝑘∈ℤ𝑛

| 􏾦𝑓(𝑘)| converges now follows by 𝑓 ∈ 𝔖(ℝ𝑛). □

7 The discrete Fourier transform and the Roth’s Theorem
In this subsection, our main objective is to prove Roth’s theorem by discrete Fourier

transform.

Theorem 52 (Roth’s theorem). Let𝐴 ⊂ ℕ be a set of positive integers. If the density of𝐴 is greater
than 0. That is

lim sup
𝑛→∞

#𝐴 ∩ {1, 2, … , 𝑛}
𝑛 = 𝛿 > 0.

Then 𝐴 contains a three terms arithmetic progression. In other words, there are 𝑥, 𝑑 ∈ ℕ such that
{𝑥, 𝑥 + 𝑑, 𝑥 + 2𝑑} ⊂ 𝐴.

History

In 1980, E. Szemerédi showed the following

Theorem 53 (Szemerédi’s theorem). Let 𝐴 ⊂ ℕ be a set of positive integers with positive density.
Then for all 𝑘 ≥ 3, 𝐴 contains a 𝑘-term arithmetic progression. In other words, there are 𝑥, 𝑑 ∈ ℕ
such that {𝑥, 𝑥 + 𝑑,… , 𝑥 + (𝑘 − 1)𝑑} ⊂ 𝐴.

This theorem has a lot of approaches. H. Fusterberg proves this theorem by using the
ergodic theory. T. Gowers proves the theorem by using the Fourier transform.

Math

Nowwewill work on the cyclic groupℤ𝑛 ∶= ℤ/𝑛ℤ. We shall now give some definitions.

Definition 54.

1. We write ℂℤ𝑛 to denote all complex-valued functions 𝑓 ∶ ℤ𝑛 → ℂ.

2. The mean of 𝑓 ∈ ℂℤ𝑛 is defined by 𝔼𝑛𝑓 =
1
𝑛
􏾜
𝑥∈ℤ𝑛

𝑓(𝑥).

3. For any sets 𝐴 ⊂ ℤ𝑛, it induces a natural map 𝐴 ∈ ℂℤ𝑛 through

𝐴(𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

.

It is clear that 𝔼𝑛𝐴 = |𝐴|
𝑛 .

4. The exponential function 𝔢𝑛(𝑥) ∶= 𝑒2𝜋𝑖𝑥/𝑛.

44



Lemma 20 (Orthogonal property). If 𝜉 ∈ ℤ𝑛, then

1
𝑛
􏾜
𝑥∈ℤ𝑛

𝔢𝑛(𝑥𝜉) =

⎧⎪⎪⎨
⎪⎪⎩
1, 𝜉 = 0
0, 𝜉 ≠ 0

.

Proof. If 𝜉 = 0, it is trivial. Now suppose 𝜉 ≠ 0, then there exists ℎ ≠ 0 such that 𝔢𝑛(𝜉ℎ) ≠ 1.
Hence

1
𝑛
􏾜
𝑥∈ℤ𝑛

𝔢𝑛(𝑥𝜉) =
1
𝑛
􏾜
𝑥∈ℤ𝑛

𝔢𝑛((𝑥 + ℎ)𝜉) = 𝔢𝑛(𝜉ℎ)
1
𝑛
􏾜
𝑥∈ℤ𝑛

𝔢𝑛(𝑥𝜉).

This shows 1𝑛
􏾜
𝑥∈ℤ𝑛

𝔢𝑛(𝑥𝜉) = 0.

Corollary. Given 𝜉, 𝜉′ ∈ ℤ𝑛. Then

𝔼𝑛 􏿴𝔢𝑛(𝜉𝑥)𝔢𝑛(𝜉′𝑥)􏿷 =

⎧⎪⎪⎨
⎪⎪⎩
1, 𝜉 = 𝜉′

0, 𝜉 ≠ 𝜉′
.

Similar to the function space, we also can define inner product on ℂℤ𝑛 .

Definition 55 (inner product). Let 𝑓, 𝑔 ∈ ℂℤ𝑛 , we define the inner product of 𝑓 and 𝑔 by

􏾉𝑓, 𝑔􏽼 ∶= 𝔼𝑛 􏿴𝑓(𝑥)𝑔(𝑥)􏿷 .

Definition 56 (Discrete Fourier transform). Given 𝑓 ∈ ℂℤ𝑛 , we define

􏾦𝑓(𝜉) = 1
𝑛
􏾜
𝑥∈ℤ𝑛

𝑓(𝑥)𝔢𝑛(𝜉𝑥)

to be the Fourier transform of 𝑓.

We now could list some properties.

Theorem 57 (Parseval’s formula). For any 𝑓 ∈ ℂℤ𝑛 , we have

􏿵𝔼𝑛 |𝑓|
2􏿸
1/2
=

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾜𝜉∈ℤ𝑛

| 􏾦𝑓(𝜉)|2
⎞
⎟⎟⎟⎟⎟⎟⎠

1/2

.

Proof. The square of right-hand side is equal to

􏾜
𝜉∈ℤ𝑛

| 􏾦𝑓(𝜉)|2 = 􏾜
𝜉∈ℤ𝑛

|
|
1
𝑛
􏾜
𝑥∈ℤ𝑛

𝑓(𝑥)𝔢𝑛(𝜉𝑥)
|
|

2

= 1
𝑛2

􏾜
𝜉∈ℤ𝑛

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾜𝑥∈ℤ𝑛

𝑓(𝑥)𝔢𝑛(𝜉𝑥)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾜𝑦∈ℤ𝑛

𝑓(𝑦)𝔢𝑛(𝜉𝑦)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1
𝑛2

􏾜
𝜉∈ℤ𝑛

􏾜
𝑥∈ℤ𝑛

􏾜
𝑦∈ℤ𝑛

𝑓(𝑥)𝑓(𝑦)𝔢𝑛(𝜉(𝑦 − 𝑥))

= 1
𝑛2

􏾜
𝑥∈ℤ𝑛

􏾜
𝑦∈ℤ𝑛

𝑓(𝑥)𝑓(𝑦) 􏾜
𝜉∈ℤ𝑛

𝔢𝑛(𝜉(𝑦 − 𝑥))
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(')= 1
𝑛
􏾜
𝑥∈ℤ𝑛

𝑓(𝑥)𝑓(𝑥) = 𝔼𝑛 |𝑓|
2
.

We used Lemma 20 on (').
Theorem 58. For any 𝑓, 𝑔 ∈ ℂℤ𝑛 , we have

𝔼𝑛𝑓(𝑥)𝑔(𝑥) = 􏾜
𝜉∈ℤ𝑛

􏾦𝑓(𝜉)􏾦𝑔(𝜉).

Proof. By direct computation,

􏾜
𝜉∈ℤ𝑛

􏾦𝑓(𝜉)􏾦𝑔(𝜉) = 􏾜
𝜉∈ℤ𝑛

1
𝑛2

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾜𝑥∈ℤ𝑛

𝑓(𝑥)𝔢𝑛(𝜉𝑥)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾜𝑦∈ℤ𝑛

𝑔(𝑦)𝔢𝑛(𝜉𝑦)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1
𝑛2

􏾜
𝑥∈ℤ𝑛

􏾜
𝑦∈ℤ𝑛

𝑓(𝑥)𝑔(𝑦) 􏾜
𝜉∈ℤ𝑛

𝔢𝑛(𝜉(𝑦 − 𝑥))

(♁)= 1
𝑛
􏾜
𝑥∈ℤ𝑛

𝑓(𝑥)𝑔(𝑥) = 𝔼𝑛𝑓(𝑥)𝑔(𝑥).

We used Lemma 20 on (♁).
Theorem 59 (Fourier integral theorem). For any 𝑓 ∈ ℂℤ𝑛 , we have

𝑓(𝑥) = 􏾜
𝜉∈ℤ𝑛

􏾦𝑓(𝜉)𝔢𝑛(𝜉𝑥).

Proof. The right-hand side is equal to

􏾜
𝜉∈ℤ𝑛

⎛
⎜⎜⎜⎜⎜⎜⎝
1
𝑛
􏾜
𝑦∈ℤ𝑛

𝑓(𝑦)𝔢𝑛(𝜉𝑦)

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝔢𝑛(𝜉𝑥) =

1
𝑛
􏾜
𝜉∈ℤ𝑛

􏾜
𝑦∈ℤ𝑛

𝑓(𝑦)𝔢𝑛(𝜉𝑦)𝔢𝑛(𝜉𝑥)

= 􏾜
𝑦∈ℤ𝑛

𝑓(𝑦)

⎛
⎜⎜⎜⎜⎜⎜⎝
1
𝑛
􏾜
𝜉∈ℤ𝑛

𝔢𝑛(𝜉(𝑥 − 𝑦))

⎞
⎟⎟⎟⎟⎟⎟⎠

(X)= 𝑓(𝑥).

We used Lemma 20 on (X).
Definition 60 (convolution). Given 𝑓, 𝑔 ∈ ℂℤ𝑛 . Define the convolution 𝑓 ∗ 𝑔 by

𝑓 ∗ 𝑔(𝑥) = 𝔼𝑛
𝑦∈ℤ𝑛

𝑓(𝑦)𝑔(𝑥 − 𝑦) = 𝔼𝑛
𝑦∈ℤ𝑛

𝑔(𝑦)𝑓(𝑥 − 𝑦) = 𝑔 ∗ 𝑓(𝑥).

Definition 61 (support).

1. Given 𝑓 ∈ ℂℤ𝑛 . Then the support of 𝑓 is the set supp(𝑓) = {𝑥 ∈ ℤ𝑛 ∶ 𝑓(𝑥) ≠ 0}.

2. Given two sets 𝐴,𝐵 ⊂ ℤ𝑛, write 𝐴 + 𝐵 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ⊂ ℤ𝑛.

Here we can list some properties of convolution.
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Theorem 62. Given 𝑓, 𝑔 ∈ ℂℤ𝑛 , we have supp(𝑓 ∗ 𝑔) ⊂ supp(𝑓) + supp(𝑔). In particular, if 𝑓 = 𝐴
and 𝑔 = 𝐵 for some 𝐴,𝐵 ⊂ ℤ𝑛, then supp(𝑓 ∗ 𝑔) = supp(𝑓) + supp(𝑔).

Proof. Suppose 𝑥 ∈ supp(𝑓 ∗ 𝑔), then there exists 𝑦 ∈ ℤ𝑛 such that 𝑓(𝑦)𝑔(𝑥 − 𝑦) ≠ 0. Therefore,
𝑦 ∈ supp(𝑓) and 𝑥 − 𝑦 ∈ supp(𝑔), and 𝑥 ∈ supp(𝑓) + supp(𝑔). This shows supp(𝑓 ∗ 𝑔) ⊂
supp(𝑓) + supp(𝑔). Now suppose 𝑓 = 𝐴 and 𝑔 = 𝐵 for some 𝐴,𝐵 ⊂ ℤ𝑛. To show the second
statement, it suffices to prove 𝐴+ 𝐵 = supp(𝑓) + supp(𝑔) ⊂ supp(𝑓 ∗ 𝑔). Let 𝑥 ∈ 𝐴 + 𝐵, that is,
𝑥 = 𝑎 + 𝑏 for some 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Then

𝑓 ∗ 𝑔(𝑥) = 𝔼𝑛
𝑦∈ℤ𝑛

𝑓(𝑦)𝑔(𝑥 − 𝑦) ≥ 1
𝑛𝐴(𝑎)𝐵(𝑏) =

1
𝑛,

we conclude that 𝑓 ∗ 𝑔(𝑥) ≠ 0.

Theorem 63. Given 𝑓, 𝑔 ∈ ℂℤ𝑛 . The following statements are true:

1. 􏾨𝑓 ∗ 𝑔 = 􏾦𝑓 ⋅ 􏾦𝑔.
2. 𝔼𝑛 􏿴𝑓 ∗ 𝑔􏿷 = 􏿴𝔼𝑛𝑓􏿷 􏿴𝔼𝑛𝑔􏿷.

Proof. Both statements can be proved by direct computation.

1. It follows by

􏾦𝑓(𝜉)􏾦𝑔(𝜉) =

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾜𝑥∈ℤ𝑛

𝑓(𝑥)𝔢𝑛(𝜉𝑥)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾜𝑦∈ℤ𝑛

𝑔(𝑦)𝔢𝑛(𝜉𝑦)

⎞
⎟⎟⎟⎟⎟⎟⎠

(Z)= 1
𝑛2

􏾜
𝑥∈ℤ𝑛

􏾜
𝑧∈ℤ𝑛

𝑓(𝑥)𝑔(𝑧 − 𝑥)𝔢𝑛(𝜉𝑧)

= 1
𝑛
􏾜
𝑧∈ℤ𝑛

⎛
⎜⎜⎜⎜⎜⎜⎝
1
𝑛
􏾜
𝑥∈ℤ𝑛

𝑓(𝑥)𝑔(𝑧 − 𝑥)

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝔢𝑛(𝜉𝑧)

= 1
𝑛
􏾜
𝑧∈ℤ𝑛

𝑓 ∗ 𝑔(𝑧)𝔢𝑛(𝜉𝑧) = 􏾨𝑓 ∗ 𝑔(𝜉).

We used the substitution 𝑧 = 𝑥 + 𝑦 on (Z).
2. The left-hand side is equal to

1
𝑛2

􏾜
𝑥∈ℤ𝑛

􏾜
𝑦∈ℤ𝑛

𝑓(𝑦)𝑔(𝑥 − 𝑦) =

⎛
⎜⎜⎜⎜⎜⎜⎝
1
𝑛
􏾜
𝑥∈ℤ𝑛

𝑓(𝑥)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
1
𝑛
􏾜
𝑦∈ℤ𝑛

𝑔(𝑦)

⎞
⎟⎟⎟⎟⎟⎟⎠ = 􏿴𝔼𝑛𝑓􏿷 􏿴𝔼𝑛𝑔􏿷 .

Discussions above prove the theorem.

We now can introduce the 𝐿𝑝 and ℓ𝑝 norm on the function space ℂℤ𝑛 .

Definition 64 (𝐿𝑝 and ℓ𝑝 norm). Given 𝑓 ∈ ℂℤ𝑛 . We define the 𝐿𝑝(ℤ𝑛) norm of 𝑓 by
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

􏿎𝑓􏿎𝐿𝑝 =

⎛
⎜⎜⎜⎜⎜⎝ 𝔼𝑛𝑥∈ℤ𝑛

|𝑓(𝑥)|
𝑝
⎞
⎟⎟⎟⎟⎟⎠

1/𝑝

, for 1 ≤ 𝑝 < ∞

􏿎𝑓􏿎𝐿∞ = sup
𝑥∈ℤ𝑛

|𝑓(𝑥)|
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We also can define the ℓ𝑝(ℤ𝑛) norm of 𝑓 by
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

􏿎𝑓􏿎ℓ𝑝 =

⎛
⎜⎜⎜⎜⎜⎜⎝ 􏾜𝜉∈ℤ𝑛

|𝑓(𝜉)|
𝑝
⎞
⎟⎟⎟⎟⎟⎟⎠

1/𝑝

, for 1 ≤ 𝑝 < ∞

􏿎𝑓􏿎ℓ∞ = sup
𝜉∈ℤ𝑛

|𝑓(𝜉)|

We then have the following lemma.

Lemma 21. Let 𝐴 ⊂ ℤ𝑛. Then the following statements are true:

1. ‖ 􏾧𝐴‖ℓ∞ = 􏾧𝐴(0) = |𝐴|
|ℤ𝑛|

.

2. ‖ 􏾧𝐴‖2ℓ2 ∶= 􏾜
𝜉∈ℤ𝑛

| 􏾧𝐴(𝜉)|2 = |𝐴|
|ℤ𝑛|

.

3. 􏾧𝐴(𝜉) = 􏾧𝐴(−𝜉).

Proof.

1. By the definition, 􏾧𝐴(𝜉) = 1
𝑛
􏾜
𝑥∈ℤ𝑛

𝐴(𝑥)𝔢𝑛(𝜉𝑥) =
1
𝑛
􏾜
𝑥∈𝐴

𝔢𝑛(𝜉𝑥). It follows that

| 􏾧𝐴(𝜉)| ≤ |𝐴|
𝑛 = |𝐴|

|ℤ𝑛|

and it is clear that 􏾧𝐴(0) attains the maximum among all 􏾧𝐴(𝜉).

2. By Parseval’s formula (Theorem 57), we have the right-hand side is equal to
1
𝑛
􏾜
𝑥∈ℤ𝑛

|𝐴(𝑥)|2 = |𝐴|
𝑛 = |𝐴|

|ℤ𝑛|
.

3. It follows by the definition.

Discussions above prove the theorem.

To prove the Roth’s theoremon 3-term arithmetic progression, we shall convert the prob-
lem into an equivalent statement which is easier to handle. We first let

𝑠(𝑛) = max{#𝐴 ∶ 𝐴 ⊂ [1, 𝑛], 𝐴 has no 3-term arithmetic progression}.

If we can show that

lim
𝑛→∞

𝑠(𝑛)
𝑛 = 0,

then for any𝐴 ⊂ ℕwith positive density, there has to be some 3-term arithmetic progression.
If not, then

0 ≤ #𝐴 ∩ {1, 2, … , 𝑛}
𝑛 ≤ 𝑠(𝑛)

𝑛 .
By the squeeze theorem, we obtain

lim
𝑛→∞

#𝐴 ∩ {1, 2, … , 𝑛}
𝑛 = 0
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contradicting the assumption of 𝐴 having 3-term arithmetic progression.

Lemma 22. Let 𝑠(𝑛) be defined as above. Then the limit lim
𝑛→∞

𝑠(𝑛)
𝑛 exists.

Proof. We first claim that 𝑠(𝑛) is sub-additive, that is, 𝑠(𝑛 + 𝑚) ≤ 𝑠(𝑛) + 𝑠(𝑚). Suppose 𝐴 ⊂
[1, 𝑛 +𝑚] does not have a 3-term A.P. Then 𝐴∩ [1, 𝑛] ≤ 𝑠(𝑛) and 𝐴∩ [𝑛+ 1, 𝑛 +𝑚] ≤ 𝑠(𝑚), thus
𝐴 ≤ 𝑠(𝑛) + 𝑠(𝑚). Taking supremum among all possible 𝐴, we obtain 𝑠(𝑛 + 𝑚) ≤ 𝑠(𝑛) + 𝑠(𝑚).

Now suppose lim sup
𝑛→∞

𝑠(𝑛)
𝑛 = 𝛼 ≥ 0. Fix 𝑛 ∈ ℕ. Given 𝑘 ∈ ℕ. Suppose 𝑘 = 𝑞𝑛+𝑟 for some

0 ≤ 𝑟 < 𝑛 (integer division). The sub-additive implies that 𝑠(𝑘) ≤ (𝑞 + 1)𝑠(𝑛). It now follows
that

𝑠(𝑘)
𝑘 ≤ (𝑞 + 1)𝑠(𝑛)

𝑞𝑛 ≤ 𝑠(𝑛)
𝑛

and

𝛼 = lim sup
𝑘→∞

𝑠(𝑘)
𝑘 ≤ 𝑠(𝑛)

𝑛 .

This inequality shows that

lim inf
𝑛→∞

𝑠(𝑛)
𝑛 ≥ 𝛼 = lim sup

𝑘→∞

𝑠(𝑘)
𝑘 ,

thus lim sup
𝑛→∞

𝑠(𝑛)
𝑛 = lim inf

𝑛→∞

𝑠(𝑛)
𝑛 = lim

𝑛→∞

𝑠(𝑛)
𝑛 .

Now, in order to get contradiction, we assume that lim
𝑛→∞

𝑠(𝑛)
𝑛 = 𝑐 > 0. Let 𝜖 > 0. Then

there is 𝑁 ∈ ℕ large enough such that

𝑐 − 𝜖 < 𝑠(𝑛)
𝑛 ≤ 𝑐 + 𝜖 whenever 𝑛 ≥ 𝑁.

Fix 𝑛 ≥ 𝑁 and let 𝐴 ⊂ {1, … , 2𝑛} be a set with no 3-term A.P such that
|𝐴|
2𝑛 ≥ 𝑐 − 𝜖.

Let 𝐴even = 𝐴 ∩ 2ℕ, namely, the the set of all even numbers in 𝐴, then we claim

𝑐 − 3𝜖 ≤
|𝐴even|
𝑛 ≤ 𝑐 + 𝜖.

It is clear that
|𝐴even|
𝑛 ≤ 𝑠(𝑛)

𝑛 ≤ 𝑐 + 𝜖.
Since 𝐴 − 𝐴even is a subset of {1, 3, … , 2𝑛 − 1}, thus

|𝐴 − 𝐴even|
𝑛 ≤ 𝑠(𝑛)

𝑛 ≤ 𝑐 + 𝜖,

therefore
|𝐴even|
𝑛 =

|𝐴 − (𝐴 − 𝐴even)|
𝑛 ≥

|𝐴| − |𝐴 − 𝐴even|
𝑛 ≥ (2𝑐 − 2𝜖) − (𝑐 + 𝜖) = 𝑐 − 3𝜖.

Now suppose 𝐴 = {𝑢1, 𝑢2, … , 𝑢𝑟} has 𝑟 elements and 𝐴even = {2𝑣1, 2𝑣2, … , 2𝑣𝑠} has 𝑠 elements.
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Also we write 𝐴⋆ to denote the set {𝑣1, 𝑣2, … , 𝑣𝑠}. The following lemmas will do Fourier anal-
ysis on 𝐴 as a subset of the cyclic group ℤ2𝑛.

Lemma 23. Continuing the notation above, the following statements are true:

1. 􏾧𝐴(0) = 𝑟
2𝑛 .

2. 􏾧𝐴(𝛼) = 1
2𝑛

𝑟
􏾜
𝑖=1
𝔢𝛼𝑢𝑖(2𝑛).

3. 􏾨𝐴⋆(−𝛼) =
1
2𝑛

𝑠
􏾜
𝑖=1
𝔢−𝛼𝑣𝑖(2𝑛).

4. 􏾜
𝛼∈ℤ2𝑛

􏾧𝐴(𝛼)􏾨𝐴⋆(−𝛼)2 =
𝑠
4𝑛2 .

Proof. The first three statements are corollaries of Lemma 21. We now show the fourth state-
ment.

􏾜
𝛼∈ℤ2𝑛

􏾧𝐴(𝛼)􏾨𝐴⋆(−𝛼)2 =
1
8𝑛3

􏾜
𝛼∈ℤ2𝑛

𝑟
􏾜
𝑖=1
𝔢𝛼𝑢𝑖(2𝑛)

𝑠
􏾜
𝑗=1
𝔢−𝛼𝑣𝑗(2𝑛)

𝑠
􏾜
𝑘=1

𝔢−𝛼𝑣𝑘(2𝑛)

= 1
4𝑛2

𝑟
􏾜
𝑖=1

𝑠
􏾜
𝑗=1

𝑠
􏾜
𝑘=1

⎛
⎜⎜⎜⎜⎜⎜⎝
1
2𝑛

􏾜
𝛼∈ℤ2𝑛

𝔢𝛼(𝑢𝑖−𝑣𝑗−𝑣𝑘)(2𝑛)

⎞
⎟⎟⎟⎟⎟⎟⎠

(\)= 1
4𝑛2#{(𝑖, 𝑗, 𝑘) ∶ 𝑢𝑖 − 𝑣𝑗 − 𝑣𝑘 = 0}

(♀)= 1
4𝑛2#𝐴⋆ =

𝑠
4𝑛2 .

The equality (\) holds by Lemma 20 and the equality (♀) holds since
𝑢𝑖 − 𝑣𝑗 − 𝑣𝑘 = 0 ⟹ 2𝑢𝑖 = 2𝑣𝑗 + 2𝑣𝑘,

implying that {2𝑣𝑗, 𝑢𝑖, 2𝑣𝑘} ⊂ 𝐴 is a 3-term A.P. therefore 𝑢𝑖−𝑣𝑗−𝑣𝑘 = 0 if and only if 𝑢𝑖 = 2𝑣𝑗 =
2𝑣𝑘 ∈ 𝐴even.
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