
Formal Language and Automata Theory

Hsin-Jui, Chen

August, 2023

Contents

1 Regular Languages 2

2 Context-Free Languages 8
2.1 Chomsky Normal Form . 9
2.2 Pushdown Automata and Context-Free Language 9

1

1 Regular Languages
Definition 1 (Language). Let Σ be a finite set. Then a string over Σ is a finite sequence only
consists of elements in Σ. A formal language 𝐿 over the alphabet Σ is a subset of all strings
(over Σ).

Definition 2 (Length). Let 𝑠 be a string over Σ. We write |𝑠| to denote the length of 𝑠, that is,
the length of the finite sequence denoted by 𝑠.

In this section, we will define three kinds of automata.

Definition 3 (Deterministic finite automaton). A deterministic finite automatonℳ is a 5-tuple
(𝑄, Σ, 𝛿, 𝑞0, 𝐹), which satisfies the following properties:

1. 𝑄 is the set of all states. We require that 𝑄 is non-empty and finite.

2. Σ denotes the alphabet set of all possible letters used in the input string. We require that
Σ is a finite set.

3. 𝛿 is the transition function, which is defined by

𝛿 ∶ 𝑄 × Σ → 𝑄

(𝑞, 𝜎) ↦ 𝑞+ = 𝛿(𝑞, 𝜎)

Here 𝑞+ is the next state when the machine receive the input 𝜎 ∈ Σ at the state 𝑞 ∈ 𝑄.

4. 𝑞0 is an element in 𝑄, which is called the start state.

5. 𝐹 ⊂ 𝑄 is a subset of 𝑄, which contains all accepted states.

In the following text, we shall write DFA to denote “deterministic finite automaton”.

Definition 4 (Accepted string). Letℳ be a givenDFA.We say a string 𝑠 = 𝑠1𝑠2⋯𝑠𝑛 (of length
𝑛) over Σ is accepted (recognized) byℳ if there is a sequence of states

⟨𝑞0, 𝑞1, … , 𝑞𝑛⟩

such that

𝑞𝑖 = 𝛿(𝑞𝑖−1, 𝑠𝑖) for all 1 ≤ 𝑖 ≤ 𝑛,

and 𝑞𝑛 ∈ 𝐹.

Definition 5 (Language of a DFA). Letℳ be a given DFA. Then 𝐿(ℳ) denotes the set of all
strings recognized byℳ.

Definition 6 (Regular language). Let 𝐿 be a language over Σ. We say 𝐿 is regular, if there is
a DFAℳ such that 𝐿 = 𝐿(ℳ). In this case, we say 𝐿 is recognized by the DFAℳ.

We shall now define the concept of nondeterministic finite automaton. Although it
seems quite powerful, it is actually equivalent to DFA.

2

Definition 7 (Non-deterministic finite automaton). A non-deterministic finite automatonℳ is
a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹), which satisfies the following properties:

1. 𝑄 is the set of all states. We require that 𝑄 is non-empty and finite.

2. Σ denotes the alphabet set of all possible letters used in the input string. We require
that Σ is a finite set.

3. 𝛿 is the transition function, which is defined by

𝛿 ∶ 𝑄 × Σ𝜖 → 𝒫(𝑄)

(𝑞, 𝜎) ↦ 𝑄+ = 𝛿(𝑞, 𝜎)

For clarity, we define Σ𝜖 ∶= Σ ∪ {𝜖} and 𝒫(𝑄) is the power set of 𝑄. Here 𝑄+ is set of all
possible next states when the machine receive the input 𝜎 ∈ Σ at the state 𝑞 ∈ 𝑄.

4. 𝑞0 is an element in 𝑄, which is called the start state.

5. 𝐹 ⊂ 𝑄 is a subset of 𝑄, which contains all accepted states.

In the following text, we shall write NFA to denote “non-deterministic finite automaton”.

We also need to define what does it means when we say a string over Σ is accepted by
the NFAℳ.

Definition 8 (Accepted string). Letℳ be a given NFA.We say a string 𝑠 = 𝑠1𝑠2⋯𝑠𝑛 (𝑠𝑖 ∈ Σ𝜖)
is accepted (recognized) byℳ if there is a sequence of states

⟨𝑞0, 𝑞1, … , 𝑞𝑛⟩

such that

𝑞𝑖 ∈ 𝛿(𝑞𝑖−1, 𝑠𝑖) for all 1 ≤ 𝑖 ≤ 𝑛,

and 𝑞𝑛 ∈ 𝐹.

Then we could prove that DFA is equivalent to NFA in the following sense.

Theorem 9. Let 𝐿 be a language. Then 𝐿 is recognized by a DFA if and only if 𝐿 is recognized by an
NFA.

Proof. Suppose 𝐿 is recognized by a DFAℳ = (𝑄,Σ, 𝛿, 𝑞0, 𝐹). Letℳ′ = (𝑄,Σ, 𝛿′, 𝑞0, 𝐹) be an
NFA, whose transition function 𝛿′ is defined by

𝛿′(𝑞, 𝜎) =

⎧⎪⎪⎨
⎪⎪⎩
{𝛿(𝑞, 𝜎)} if 𝜎 ∈ Σ

∅ if 𝜎 = 𝜖
.

It is clear that 𝐿(ℳ) = 𝐿(ℳ′).
Now suppose 𝐿 is recognized by an NFAℳ = (𝑄,Σ, 𝛿, 𝑞0, 𝐹). Now for each state 𝑞 ∈ 𝑄,

we define its 𝐸(𝑞) be the set

𝐸(𝑞) ∶= {𝑞} ∪ {the states can be reached from 𝑞 only by 𝜖 links.} =
∞
􏾌
𝑘=0

𝛿(𝑘)(𝑞, 𝜖).

3

For each set 𝐴 ∈ 𝒫(𝑄), we define

𝐸(𝐴) = 􏾌
𝑞∈𝐴

𝐸(𝑞).

We now can give the definition of DFA thatℳ is equivalent to.
Let ℳ′ = (𝒫(𝑄), Σ, 𝛿′, 𝐸(𝑞0), 𝐹′) be a DFA whose all possible states are 𝒫(𝑄), the start

states is 𝐸(𝑞0), and all the accepted states 𝐹′ = {𝑋 ∈ 𝒫(𝑄) ∶ 𝑋 ∩ 𝐹 ≠ ∅}. It now remains to deal
with the new transition function 𝛿′. We define

𝛿′(𝐴, 𝜎) = 􏾌
𝑞∈𝐴

𝐸(𝛿(𝑞, 𝜎))

for each 𝐴 ∈ 𝒫(𝑄) and 𝜎 ∈ Σ.
We have to show that 𝐿(ℳ) = 𝐿(ℳ′), however, this is not covered in class, therefore we

only sketch the proof here. For a string 𝑠, we consider all states 𝑞𝑠 in 𝑄 that can be reached
from 𝑞0 by processing 𝑠 (with respect to themachineℳ). We claim that {all possible 𝑞𝑠} is the
terminal state afterℳ′ processes the string 𝑠. This can be proved by performing induction
on the length |𝑠| of 𝑠.

Definition 10 (Regular operation). Let 𝐿1, 𝐿2, and 𝐿 are formal languages. Regular operations
are the following three operations:

1. 𝐿1 ∪ 𝐿2 = {𝑠 ∶ 𝑠 ∈ 𝐿1 or 𝑠 ∈ 𝐿2}.

2. 𝐿1 ∘ 𝐿2 = {𝑠𝑡 ∶ 𝑠 ∈ 𝐿1 and 𝑡 ∈ 𝐿2}.

3. 𝐿∗ = {𝑠 ∶ 𝑠 = 𝜎1𝜎2⋯𝜎𝑛, 𝑛 ≥ 0 and 𝜎𝑖 ∈ Σ}. In other words, 𝐿∗ is the language generated
by 𝐿.

This is the definition covered in class, more formally, we may say a (binary) map

(𝐿1, 𝐿2) ↦ 𝜑(𝐿1, 𝐿2)

is a regular operation if 𝜑(𝐿1, 𝐿2) is a regular language whenever both 𝐿1 and 𝐿2 are regular.
Similar definition can be extended to unary or even ternary operators (maps).

Theorem 11. Regular operations preserves the regularity of languages, that is, if languages 𝐿1, 𝐿2,
and 𝐿 are regular, then 𝐿1 ∪ 𝐿2, 𝐿1 ∘ 𝐿2, and 𝐿∗ are both regular.

Proof. We might assume that both languages are using the same alphabet set, otherwise
we may consider the union of those alphabet sets. Suppose ℳ1 = (𝑄1, Σ, 𝛿1, 𝑠1, 𝐹1), ℳ2 =
(𝑄2, Σ, 𝛿2, 𝑠2, 𝐹2), and ℳ = (𝑄,Σ, 𝛿, 𝑠, 𝐹) are NFAs that recognize 𝐿1, 𝐿2, and 𝐿, respectively.
We may also assume that 𝑄1, 𝑄2, and 𝑄 are pairwise disjoint. Now consider a new NFA
ℳun = (𝑄un, Σ, 𝛿un, 𝑠un, 𝐹un), where

1. 𝑄un ∶= 𝑄1 ∪ 𝑄2 ∪ {𝑠un} is the set of states.
2. 𝑠un is the start state.

4

3. 𝐹un = 𝐹1 ∪ 𝐹2 is the set of accepted states.
4. 𝛿un is the new transition function defined by

𝛿un(𝑞, 𝜎) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝛿𝑖(𝑞, 𝜎) if 𝑞 ∈ 𝑄𝑖 (𝑖 = 1 or 2)

{𝑠1, 𝑠2} if 𝑞 = 𝑠un and 𝜎 = 𝜖

∅ otherwise

.

It is clear that 𝐿(ℳun) = 𝐿1 ∪ 𝐿2. We now letℳcat = (𝑄cat, Σ, 𝛿cat, 𝑠cat, 𝐹cat), where

1. 𝑄cat = 𝑄1 ∪ 𝑄2 is the set of states.
2. 𝑠cat = 𝑠1 is the start state.
3. 𝐹cat = 𝐹2 is the set of accepted states.
4. 𝛿cat is the new transition function defined by

𝛿cat(𝑞, 𝜎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛿1(𝑞, 𝜎) if 𝑞 ∈ 𝑄1 ⧵ 𝐹1
𝛿2(𝑞, 𝜎) if 𝑞 ∈ 𝑄2

𝛿1(𝑞, 𝜖) ∪ {𝑠2} if 𝑞 ∈ 𝐹1 and 𝜎 = 𝜖

𝛿1(𝑞, 𝜎) otherwise

.

It is clear that 𝐿(ℳcat) = 𝐿1 ∘ 𝐿2. We now consider the NFAℳ∗ = (𝑄∪ {𝑠0}, Σ, 𝛿∗, 𝑠∗, 𝐹∗), where

1. 𝑄 ∪ {𝑠∗} is the set of states.
2. 𝑠∗ is the start state.
3. 𝐹∗ ∶= 𝐹 ∪ {𝑠∗} is the set of accepted states.
4. 𝛿∗ is the new transition function defined by

𝛿∗(𝑞, 𝜎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛿(𝑞, 𝜎) if 𝑞 ∈ 𝑄 ⧵ 𝐹

𝛿(𝑞, 𝜎) ∪ {𝑠} if 𝑞 ∈ 𝐹 and 𝜎 = 𝜖

𝛿(𝑞, 𝜎) if 𝑞 ∈ 𝐹 and 𝜎 ≠ 𝜖

{𝑠} if 𝑞 = 𝑠∗ and 𝜎 = 𝜖

∅ if 𝑞 = 𝑠∗ and 𝜎 ≠ 𝜖

.

It is clear that 𝐿(ℳ∗) = 𝐿∗. Discussions above proves the theorem.

Although the proof is not quite rigorous ——there are still some details need to be han-
dled, we omit the details here.

Definition 12 (Regular expression). We say a language 𝐿 is a regular expression if one of the
following conditions are met

1. 𝐿 = ∅, or 𝐿 = {𝜖}, or 𝐿 = {𝜎} for some 𝜎 ∈ Σ.

2. 𝐿 = 𝐿1 ∪ 𝐿2, for some regular expressions 𝐿1 and 𝐿2.

3. 𝐿 = 𝐿1 ∘ 𝐿2, for some regular expressions 𝐿1 and 𝐿2.

4. 𝐿 = 𝐿∗0, for some regular expression 𝐿0.

5

By this definition, it is reasonable to write Σ ∗ to denote the set of all strings over Σ.

Theorem 13. A language 𝐿 is regular if and only if it is a regular expression.

Before proving this theorem, wemight introduce another kind of finite automata, called
generalized non-deterministic finite automata.

Definition 14 (Generalizednon-deterministic finite automaton). A generalized non-deterministic
finite automatonℳ is a 5-tuple (𝑄, Σ, 𝛿, 𝑞s, 𝑞ac), which satisfies the following properties:

1. 𝑄 is the set of all states. We require that 𝑄 is non-empty and finite. We require that
𝑞s, 𝑞ac ∈ 𝑄.

2. Σ denotes the alphabet set of all possible letters used in the input string. We require
that Σ is a finite set.

3. 𝛿 is the transition function, which is defined by

𝛿 ∶ 𝑄 ⧵ {𝑞ac} × 𝑄 ⧵ {𝑞s} → ℛ

(𝑞𝑖, 𝑞𝑗) ↦ 𝐿𝑖𝑗 = 𝛿(𝑞𝑖, 𝑞𝑗)

For clarity, we defineℛ is the set of all regular expressions over Σ.

4. 𝑞0 is an element in 𝑄, which is called the start state.

5. 𝐹 ⊂ 𝑄 is a subset of 𝑄, which contains all accepted states.

In the following text, we shall write GNFA to denote “generalized non-deterministic finite
automaton”.

We also can define the concept of accepted strings.

Definition 15 (Accepted string). Letℳ = (𝑄,Σ, 𝛿, 𝑞s, 𝑞ac) be a given GNFA. We say a string
𝑠 = 𝑠1𝑠2⋯𝑠𝑛 (𝑠𝑖 ∈ Σ ∗) is accepted (recognized) byℳ if there is a sequence of states

⟨𝑞s = 𝑞0, 𝑞1, … , 𝑞𝑛−1, 𝑞𝑛 = 𝑞ac⟩

such that

𝑠𝑖 ∈ 𝛿(𝑞𝑖−1, 𝑞𝑖) for all 1 ≤ 𝑖 ≤ 𝑛.

It is worth noting that 𝛿(𝑞𝑖−1, 𝑞𝑖) is a language by the definition.

Lemma 1. Let ℳ = (𝑄,Σ, 𝛿, 𝑞s, 𝑞ac) be a GNFA with |𝑄| ≥ 3. Define a new GNFA ℳ′ =
(𝑄′, Σ, 𝛿′, 𝑞s, 𝑞ac) by removing a state 𝑞rip ∈ 𝑄 ⧵ {𝑞s, 𝑞ac}. More precisely, the new machineℳ′

after the removal has to meet the conditions:

1. 𝑄′ = 𝑄 ⧵ {𝑞rip}.

2. For any two states 𝑠, 𝑡 ∈ 𝑄′, we define

𝛿′(𝑠, 𝑡) = 𝛿(𝑠, 𝑡) ∪ 𝛿(𝑠, 𝑞rip) ∘ 𝛿(𝑞rip, 𝑞rip)∗ ∘ 𝛿(𝑞rip, 𝑡).

6

Then 𝐿(ℳ) = 𝐿(ℳ′).

Lemma2. Letℳ = (𝑄,Σ, 𝛿, 𝑞0, 𝐹) be aDFA.Wenowdefine aGNFAℳ′ = (𝑄∪{𝑞s, 𝑞ac}, Σ, 𝛿′, 𝑞s, 𝑞ac)
by

𝛿′(𝑠, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{𝜎 ∈ Σ ∶ 𝛿(𝑠, 𝜎) = 𝑡} if 𝑠 ∈ 𝑄 and 𝑡 ∈ 𝑄

{𝜖} if 𝑠 = 𝑞s and 𝑡 = 𝑞0
{𝜖} if 𝑠 ∈ 𝐹 and 𝑡 = 𝑞ac
∅ otherwise

Then 𝐿(ℳ) = 𝐿(ℳ′).

Both two lemmas are easy to verify. We now can prove Theorem 13 with these two
lemmas.
Proof of Theorem 13. By Definition 12 and Theorem 11, we easily see that a language is regular
if it is regular expression. Now suppose 𝐿 is a regular language, then by Lemma 2, there is a
GNFAℳ = (𝑄,Σ, 𝛿, 𝑞s, 𝑞ac) that recognize 𝐿. By applying (|𝑄|−2) times Lemma 1, we remove
all the states in 𝑄 ⧵ {𝑞s, 𝑞ac}. Hence we get a GNFA ℳf = ({𝑞s, 𝑞ac}, Σ, 𝛿f, 𝑞s, 𝑞ac) which only
have two states {𝑞s, 𝑞ac}. Thus, 𝐿(ℳ) = 𝐿(ℳf) = 𝛿f(𝑞s, 𝑞ac) ∈ ℛ . □

Theorem 16 (Pumping Lemma). Suppose 𝐿 is a regular language over Σ. Then there exists 𝑝 ∈ ℕ
such that for all 𝑠 ∈ 𝐿 with |𝑠| ≥ 𝑝, there are strings 𝑥, 𝑦, 𝑧 ∈ Σ ∗ such that 𝑠 = 𝑥𝑦𝑧, |𝑦| > 0, |𝑥𝑦| ≤ 𝑝,
and

𝑠 = 𝑥𝑦𝑘𝑧 ∈ 𝐿 whenever 𝑘 ∈ ℕ ∪ {0}.

In this case, we call 𝑝 the pumping length.

Although this theorem is called the pumping lemma, I still label it as a theorem accord-
ing to its importance on solving problems.

Proof. Letℳ = (𝑄,Σ, 𝛿, 𝑞0, 𝐹) be a DFA that recognize 𝐿. We let 𝑝 = |𝑄|. Now given any string
𝑠 ∈ 𝐿 with |𝑠| ≥ 𝑝. Write 𝑠 = 𝑠1𝑠2⋯𝑠𝑛 (𝑠𝑖 ∈ Σ). By the definition, there is a sequence of states

⟨𝑞0, 𝑞1, … , 𝑞𝑛⟩

such that

𝑞𝑖 = 𝛿(𝑞𝑖−1, 𝑠𝑖) for all 1 ≤ 𝑖 ≤ 𝑛,

and 𝑞𝑛 ∈ 𝐹. Since 𝑛 ≥ 𝑝, it follows by the pigeon’s hole principle that there have to be two
indices 0 ≤ 𝑙 < 𝑟 ≤ 𝑝 such that 𝑞𝑙 = 𝑞𝑟. It is now clear that the sequence

𝑞0
𝑥⟶𝑞𝑙

𝑦𝑘
⟶𝑞𝑟

𝑧⟶𝑞𝑛

recognizes 𝑥𝑦𝑘𝑧, therefore 𝑥𝑦𝑘𝑧 ∈ 𝐿 for all 𝑘 ∈ ℕ ∪ {0}. Note that 𝑝 ≥ 𝑟 > 𝑙, we obtain |𝑥𝑦| ≤ 𝑝
and |𝑦| > 0.

7

Corollary. Given a language 𝐿 over Σ. If for all 𝑝 ∈ ℕ, there exists a string 𝑠 ∈ 𝐴 with |𝑠| ≥ 𝑝
such that for all 𝑥, 𝑦, 𝑧 ∈ Σ ∗ satisfying 𝑠 = 𝑥𝑦𝑧, |𝑦| > 0, and |𝑥𝑦| ≤ 𝑝, there is a 𝑘 ∈ ℕ such that
𝑥𝑦𝑘𝑧 ∉ 𝐿. Then we may conclude that 𝐿 is not regular.

2 Context-Free Languages
Definition 17 (Context-free grammars). A 4-tuple 𝒢 = (𝑉,Σ, 𝑅, 𝑆) is said to be a context-free
grammar if the following conditions are met:

1. 𝑉 is the variable set. We require that 𝑉 is finite and non-empty.

2. Σ is the terminal alphabet set. We also require thatΣ is finite, non-empty and𝑉∩Σ = ∅.

3. 𝑅 is the rules of the grammar. 𝑅 is a finite subset of 𝑉 × (𝑉 ∪ Σ)∗. If (𝑣, 𝑠) ∈ 𝑅, it means
we can replace 𝑣 ∈ 𝑉 with the string 𝑠 when we make up a sentence. We often write
𝑣 → 𝑠 for (𝑣, 𝑠) ∈ 𝑅.

4. 𝑆 ∈ 𝑉 is the start variable.

In the following text, we shall write CFG to denote “context-free grammar”.

Definition 18 (Context-free languages). Given a context-free grammar𝒢 = (𝑉,Σ, 𝑅, 𝑆). Con-
sider a string of the form 𝑢𝐴𝑣, where 𝑢, 𝑣 ∈ (𝑉 ∪ Σ)∗ and 𝐴 ∈ 𝑉. We write

𝑢𝐴𝑣 ⇒ 𝑢𝑤𝑣 (𝑤 ∈ (𝑉 ∪ Σ)∗)

if (𝐴,𝑤) ∈ 𝑅. In this case, we say 𝑢𝐴𝑣 directly yields 𝑢𝑤𝑣 (with respect to the CFG 𝒢).
Now suppose we have two string 𝑢, 𝑣 over (𝑉 ∪ Σ). We write 𝑢

∗
⇒ 𝑣 if 𝑢 = 𝑣 or there are

some 𝑢𝑖 ∈ (𝑉 ∪ Σ)∗ (1 ≤ 𝑖 ≤ 𝑛, 𝑛 ∈ ℕ ∪ {0}) such that

𝑢 ⇒ 𝑢1 ⇒ 𝑢2 ⇒⋯⇒ 𝑢𝑛 ⇒ 𝑣.

We now define the context-free language 𝐿(𝒢) of the CFG 𝒢 is the language

{𝑤 ∈ Σ ∗ ∶ 𝑆
∗
⇒ 𝑤}.

We shall write CFL to denote “context-free language”.

We now give an example of a grammar.

Example 19. We consider the grammar

⟨𝑒𝑥𝑝𝑟⟩ → ⟨𝑒𝑥𝑝𝑟⟩ + ⟨𝑒𝑥𝑝𝑟⟩ | ⟨𝑒𝑥𝑝𝑟⟩ × ⟨𝑒𝑥𝑝𝑟⟩ | (⟨𝑒𝑥𝑝𝑟⟩) | 𝑎,

where ⟨𝑒𝑥𝑝𝑟⟩ is the only variable (therefore it is the start variable) and 𝑎 is any terminal character. It

8

is clear that 𝑎 × 𝑎 + 𝑎 has two ways to generate, as follows:

⟨𝑒𝑥𝑝𝑟⟩ ⇒ ⟨𝑒𝑥𝑝𝑟⟩ + ⟨𝑒𝑥𝑝𝑟⟩ ⇒ ⟨𝑒𝑥𝑝𝑟⟩ × ⟨𝑒𝑥𝑝𝑟⟩ + ⟨𝑒𝑥𝑝𝑟⟩

⇒ 𝑎 × ⟨𝑒𝑥𝑝𝑟⟩ + ⟨𝑒𝑥𝑝𝑟⟩ ⇒ 𝑎 × 𝑎 + ⟨𝑒𝑥𝑝𝑟⟩ ⇒ 𝑎 × 𝑎 + 𝑎

⟨𝑒𝑥𝑝𝑟⟩ ⇒ ⟨𝑒𝑥𝑝𝑟⟩ × ⟨𝑒𝑥𝑝𝑟⟩ ⇒ 𝑎 × ⟨𝑒𝑥𝑝𝑟⟩

⇒ 𝑎 × ⟨𝑒𝑥𝑝𝑟⟩ + ⟨𝑒𝑥𝑝𝑟⟩ ⇒ 𝑎 × 𝑎 + ⟨𝑒𝑥𝑝𝑟⟩ ⇒ 𝑎 × 𝑎 + 𝑎

People would like to interpret the first expression as (𝑎 × 𝑎) + 𝑎 and the second as 𝑎× (𝑎+ 𝑎) according
to the approach we generate the sentence (string).

This example shows the concept of ambiguity, in general, if a sentence can be generated
by two different ways, then we may say the sentence is ambiguity. More rigorously, we have
the following

Definition 20 (Ambiguity). Let 𝒢 be a grammar. We say 𝑆 = 𝑢0 ⇒ 𝑢1 ⇒ 𝑢2 ⇒ ⋯ ⇒ 𝑢𝑘 is
a leftmost derivation if for each 𝑢𝑖 ⇒ 𝑢𝑖+1, we only replace the leftmost variable with a string
over 𝑉 ∪ Σ by the rules 𝑅. A string 𝑠 ∈ 𝐿(𝒢) is said to be ambiguous if there are two different
leftmost derivation 𝑆

∗
⇒ 𝑠. A grammar 𝒢 is called ambiguous if there is a ambiguous string

𝑠 ∈ 𝐿(𝒢).

Definition 21 (Inherently ambiguous). We say a context-free language 𝐿 is inherently ambigu-
ous if for any CFG 𝒢 that generates 𝐿, 𝒢 is ambiguous.

2.1 Chomsky Normal Form

In this subsection, we discuss a simpler grammar called Chomsky normal form. Later
we will see that each CFG is equivalent to a Chomsky normal form.

Definition 22 (Chomsky normal form). ACFG𝒢 is said to be inChomsky normal form if every
rule is of the form

𝐴 → 𝐵𝐶 or 𝐴 → 𝜎,

where 𝜎 ∈ Σ is a terminal character and 𝐴, 𝐵, and 𝐶 are any variables ——except that 𝐵 and
𝐶may not be the start variable. In addition, we permit the rule 𝑆 → 𝜖.

Theorem 23. Any context-free language 𝐿 is generated by CFG in Chomsky normal form.

Proof.

2.2 Pushdown Automata and Context-Free Language

In this subsection, we will introduce another automata which recognize CFLs. To put it
simply, a pushdown automaton is an NFA with a stack memory. Strictly speaking, we have
the following

9

Definition 24 (Pushdown automaton). A 6-tupleℳ = (𝑄,Σ, Γ, 𝛿, 𝑞0, 𝐹) is said to be a push-
down automaton if the following conditions are met:

1. 𝑄 is the set of all states. We require that 𝑄 is non-empty and finite.

2. Σ denotes the alphabet set of all possible letters used in the input string. We require that
Σ is a finite set.

3. Γ denotes the stack alphabet set of all possible letters used in the stack memory. We
require that Γ is a finite set.

4. 𝛿 is the transition function, which has the domain and co-domain as

𝛿 ∶ 𝑄 × Σ𝜖 × Γ𝜖 → 𝒫(𝑄 × Γ𝜖)

where (𝑞+, 𝛾′) ∈ 𝛿(𝑞, 𝜎, 𝛾)means that if the current state is 𝑞, the input is 𝜎 and the top of
the stack is 𝛾, then one of the possible operation is move to the state 𝑞+ and change the
top of the stack from 𝛾 to 𝛾′. If (𝑞+, 𝛾′) ∈ 𝛿(𝑞, 𝜎, 𝛾), we often write the transition 𝑞 → 𝑞+

with 𝜎, 𝛾 → 𝛾′ to denote the link.

5. 𝑞0 is an element in 𝑄, which is called the start state.

6. 𝐹 ⊂ 𝑄 is a subset of 𝑄, which contains all accepted states.

In the following text, we shall write PDA to denote “pushdown automaton”.

Similarly, we have

Definition 25 (Accepted string). Letℳ be a given PDA. We say a string 𝑠 = 𝑠1𝑠2⋯𝑠𝑛 (𝑠𝑖 is
possibly 𝜖) over Σ is accepted (recognized) byℳ if there are a sequence of states ⟨𝑞0, 𝑞1, … , 𝑞𝑛⟩
and two sequence of characters ⟨𝑎1, … , 𝑎𝑛⟩ and ⟨𝑏1, … , 𝑏𝑛⟩ such that

1. 𝑞𝑛 ∈ 𝐹, namely, the final state is accepted.

2. (𝑞𝑖, 𝑏𝑖) ∈ 𝛿(𝑞𝑖−1, 𝑠𝑖, 𝑎𝑖) for all 𝑖 = 1, … , 𝑛.

3. There exist strings 𝑤0, 𝑤1, … , 𝑤𝑛 ∈ Γ ∗ such that

𝑤𝑖−1 = 𝑎𝑖𝑡𝑖 and 𝑤𝑖 = 𝑏𝑖𝑡𝑖

for all 𝑖 = 1, … , 𝑛. Note that it is possible that 𝑎𝑖 or 𝑏𝑖 is 𝜖.

Definition 26 (Language of a DFA). Letℳ be a given PDA. Then 𝐿(ℳ) denotes the set of all
strings recognized byℳ.

Lemma 3. Letℳ = (𝑄,Σ, Γ, 𝛿, 𝑞0, 𝐹) be a given PDA. Then there exists a PDAℳ′ recognizing
the same language asℳ such that

1. |𝐹| = 1, that is, there is only a single accepted state.

10

2. The stack is empty before accepted. That is, we added another constraint

𝑤0 = 𝑤𝑛 = 𝜖

on the requirements of the sequences (𝑞𝑖), (𝑎𝑖), and (𝑏𝑖) in Definition 25.

3. Each transition is a pop or push operation. That is, if (𝑞+, 𝛾′) ∈ 𝛿(𝑞, 𝜎, 𝛾), thenwe require
that exactly one of the character {𝛾, 𝛾′} has to be 𝜖.

Theorem 27. A language 𝐿 is a CFL if and only if 𝐿 is recognize by a PDAℳ.

11

