Formal Language and Automata Theory

Hsin-Jui, Chen

August, 2023

Contents

1	Reg	ular Languages	2
2	Context-Free Languages		8
	2.1	Chomsky Normal Form	9
	2.2	Pushdown Automata and Context-Free Language	9

1 Regular Languages

Definition 1 (Language). Let Σ be a finite set. Then a *string* over Σ is a finite sequence only consists of elements in Σ . A *formal language* L over the alphabet Σ is a subset of all strings (over Σ).

Definition 2 (Length). Let s be a string over Σ . We write |s| to denote the *length* of s, that is, the length of the finite sequence denoted by s.

In this section, we will define three kinds of automata.

Definition 3 (Deterministic finite automaton). A *deterministic finite automaton* \mathcal{M} is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, which satisfies the following properties:

- 1. *Q* is the set of all *states*. We require that *Q* is non-empty and finite.
- 2. Σ denotes the *alphabet set* of all possible letters used in the input string. We require that Σ is a finite set.
- 3. δ is the *transition function*, which is defined by

$$\delta: Q \times \Sigma \to Q$$

$$(q, \sigma) \mapsto q^+ = \delta(q, \sigma)$$

Here q^+ is the next state when the machine receive the input $\sigma \in \Sigma$ at the state $q \in Q$.

- 4. q_0 is an element in Q, which is called the *start state*.
- 5. $F \subset Q$ is a subset of Q, which contains all accepted states.

In the following text, we shall write *DFA* to denote "deterministic finite automaton".

Definition 4 (Accepted string). Let \mathcal{M} be a given DFA. We say a string $s = s_1 s_2 \cdots s_n$ (of length n) over Σ is *accepted* (*recognized*) by \mathcal{M} if there is a sequence of states

$$\langle q_0, q_1, \dots, q_n \rangle$$

such that

$$q_i = \delta(q_{i-1}, s_i)$$
 for all $1 \le i \le n$,

and $q_n \in F$.

Definition 5 (Language of a DFA). Let \mathcal{M} be a given DFA. Then $L(\mathcal{M})$ denotes the set of all strings recognized by \mathcal{M} .

Definition 6 (Regular language). Let L be a language over Σ . We say L is regular, if there is a DFA \mathcal{M} such that $L = L(\mathcal{M})$. In this case, we say L is recognized by the DFA \mathcal{M} .

We shall now define the concept of nondeterministic finite automaton. Although it seems quite powerful, it is actually equivalent to DFA.

Definition 7 (Non-deterministic finite automaton). A *non-deterministic finite automaton* \mathcal{M} is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, which satisfies the following properties:

- 1. *Q* is the set of all states. We require that *Q* is non-empty and finite.
- 2. Σ denotes the alphabet set of all possible letters used in the input string. We require that Σ is a finite set.
- 3. δ is the transition function, which is defined by

$$\delta: Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$$
$$(q, \sigma) \mapsto Q^{+} = \delta(q, \sigma)$$

For clarity, we define $\Sigma_{\epsilon} := \Sigma \cup \{\epsilon\}$ and $\mathcal{P}(Q)$ is the power set of Q. Here Q^+ is set of all possible next states when the machine receive the input $\sigma \in \Sigma$ at the state $q \in Q$.

- 4. q_0 is an element in Q, which is called the start state.
- 5. $F \subset Q$ is a subset of Q, which contains all accepted states.

In the following text, we shall write *NFA* to denote "non-deterministic finite automaton".

We also need to define what does it means when we say a string over Σ is accepted by the NFA \mathcal{M} .

Definition 8 (Accepted string). Let \mathcal{M} be a given NFA. We say a string $s = s_1 s_2 \cdots s_n$ ($s_i \in \Sigma_{\epsilon}$) is *accepted* (*recognized*) by \mathcal{M} if there is a sequence of states

$$\langle q_0, q_1, \dots, q_n \rangle$$

such that

$$q_i \in \delta(q_{i-1}, s_i)$$
 for all $1 \le i \le n$,

and $q_n \in F$.

Then we could prove that DFA is equivalent to NFA in the following sense.

Theorem 9. Let L be a language. Then L is recognized by a DFA if and only if L is recognized by an NFA.

Proof. Suppose L is recognized by a DFA $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$. Let $\mathcal{M}' = (Q, \Sigma, \delta', q_0, F)$ be an NFA, whose transition function δ' is defined by

$$\delta'(q,\sigma) = \begin{cases} \{\delta(q,\sigma)\} & \text{if } \sigma \in \Sigma \\ \emptyset & \text{if } \sigma = \epsilon \end{cases}.$$

It is clear that $L(\mathcal{M}) = L(\mathcal{M}')$.

Now suppose *L* is recognized by an NFA $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$. Now for each state $q \in Q$, we define its E(q) be the set

$$E(q) := \{q\} \cup \{\text{the states can be reached from } q \text{ only by } \epsilon \text{ links.}\} = \bigcup_{k=0}^{\infty} \delta^{(k)}(q, \epsilon).$$

For each set $A \in \mathcal{P}(Q)$, we define

$$E(A) = \bigcup_{q \in A} E(q).$$

We now can give the definition of DFA that \mathcal{M} is equivalent to.

Let $\mathcal{M}' = (\mathcal{P}(Q), \Sigma, \delta', E(q_0), F')$ be a DFA whose all possible states are $\mathcal{P}(Q)$, the start states is $E(q_0)$, and all the accepted states $F' = \{X \in \mathcal{P}(Q) : X \cap F \neq \emptyset\}$. It now remains to deal with the new transition function δ' . We define

$$\delta'(A,\sigma) = \bigcup_{q \in A} E(\delta(q,\sigma))$$

for each $A \in \mathcal{P}(Q)$ and $\sigma \in \Sigma$.

We have to show that $L(\mathcal{M}) = L(\mathcal{M}')$, however, this is not covered in class, therefore we only sketch the proof here. For a string s, we consider all states q_s in Q that can be reached from q_0 by processing s (with respect to the machine \mathcal{M}). We claim that {all possible q_s } is the terminal state after \mathcal{M}' processes the string s. This can be proved by performing induction on the length |s| of s.

Definition 10 (Regular operation). Let L_1 , L_2 , and L are formal languages. *Regular operations* are the following three operations:

- 1. $L_1 \cup L_2 = \{s : s \in L_1 \text{ or } s \in L_2\}.$
- 2. $L_1 \circ L_2 = \{st : s \in L_1 \text{ and } t \in L_2\}.$
- 3. $L^* = \{s : s = \sigma_1 \sigma_2 \cdots \sigma_n, n \ge 0 \text{ and } \sigma_i \in \Sigma\}$. In other words, L^* is the language generated by L.

This is the definition covered in class, more formally, we may say a (binary) map

$$(L_1, L_2) \mapsto \varphi(L_1, L_2)$$

is a regular operation if $\varphi(L_1, L_2)$ is a regular language whenever both L_1 and L_2 are regular. Similar definition can be extended to unary or even ternary operators (maps).

Theorem 11. Regular operations preserves the regularity of languages, that is, if languages L_1 , L_2 , and L are regular, then $L_1 \cup L_2$, $L_1 \circ L_2$, and L^* are both regular.

Proof. We might assume that both languages are using the same alphabet set, otherwise we may consider the union of those alphabet sets. Suppose $\mathcal{M}_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$, $\mathcal{M}_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$, and $\mathcal{M} = (Q, \Sigma, \delta, s, F)$ are NFAs that recognize L_1 , L_2 , and L, respectively. We may also assume that Q_1 , Q_2 , and Q are pairwise disjoint. Now consider a new NFA $\mathcal{M}_{un} = (Q_{un}, \Sigma, \delta_{un}, s_{un}, F_{un})$, where

- 1. $Q_{un} := Q_1 \cup Q_2 \cup \{s_{un}\}$ is the set of states.
- 2. $s_{\rm un}$ is the start state.

- 3. $F_{un} = F_1 \cup F_2$ is the set of accepted states.
- 4. $\delta_{\rm un}$ is the new transition function defined by

$$\delta_{\mathrm{un}}(q,\sigma) = \begin{cases} \delta_i(q,\sigma) & \text{if } q \in Q_i \quad (i=1 \text{ or } 2) \\ \{s_1,s_2\} & \text{if } q = s_{\mathrm{un}} \text{ and } \sigma = \epsilon \end{cases}.$$

$$\varnothing & \text{otherwise}$$

It is clear that $L(\mathcal{M}_{un}) = L_1 \cup L_2$. We now let $\mathcal{M}_{cat} = (Q_{cat}, \Sigma, \delta_{cat}, s_{cat}, F_{cat})$, where

- 1. $Q_{\text{cat}} = Q_1 \cup Q_2$ is the set of states.
- 2. $s_{\text{cat}} = s_1$ is the start state.
- 3. $F_{\text{cat}} = F_2$ is the set of accepted states.
- 4. $\delta_{\rm cat}$ is the new transition function defined by

$$\delta_{\text{cat}}(q,\sigma) = \begin{cases} \delta_1(q,\sigma) & \text{if } q \in Q_1 \setminus F_1 \\ \delta_2(q,\sigma) & \text{if } q \in Q_2 \\ \delta_1(q,\epsilon) \cup \{s_2\} & \text{if } q \in F_1 \text{ and } \sigma = \epsilon \end{cases}.$$

$$\delta_1(q,\sigma) & \text{otherwise}$$

It is clear that $L(\mathcal{M}_{cat}) = L_1 \circ L_2$. We now consider the NFA $\mathcal{M}_* = (Q \cup \{s_0\}, \Sigma, \delta_*, s_*, F_*)$, where

- 1. $Q \cup \{s_*\}$ is the set of states.
- 2. s_* is the start state.
- 3. $F_* := F \cup \{s_*\}$ is the set of accepted states.
- 4. δ_* is the new transition function defined by

$$\delta_*(q,\sigma) = \begin{cases} \delta(q,\sigma) & \text{if } q \in Q \setminus F \\ \delta(q,\sigma) \cup \{s\} & \text{if } q \in F \text{ and } \sigma = \epsilon \\ \delta(q,\sigma) & \text{if } q \in F \text{ and } \sigma \neq \epsilon \end{cases}$$

$$\{s\} & \text{if } q = s_* \text{ and } \sigma \neq \epsilon \end{cases}$$

$$\emptyset & \text{if } q = s_* \text{ and } \sigma \neq \epsilon \end{cases}$$

It is clear that $L(\mathcal{M}_*) = L^*$. Discussions above proves the theorem.

Although the proof is not quite rigorous ——there are still some details need to be handled, we omit the details here.

Definition 12 (Regular expression). We say a language L is a *regular expression* if one of the following conditions are met

- 1. $L = \emptyset$, or $L = \{\epsilon\}$, or $L = \{\sigma\}$ for some $\sigma \in \Sigma$.
- 2. $L = L_1 \cup L_2$, for some regular expressions L_1 and L_2 .
- 3. $L = L_1 \circ L_2$, for some regular expressions L_1 and L_2 .
- 4. $L = L_0^*$, for some regular expression L_0 .

By this definition, it is reasonable to write Σ^* to denote the set of all strings over Σ .

Theorem 13. A language L is regular if and only if it is a regular expression.

Before proving this theorem, we might introduce another kind of finite automata, called generalized non-deterministic finite automata.

Definition 14 (Generalized non-deterministic finite automaton). A *generalized non-deterministic finite automaton* \mathcal{M} is a 5-tuple (Q, Σ , δ , q_s , q_{ac}), which satisfies the following properties:

- 1. Q is the set of all states. We require that Q is non-empty and finite. We require that $q_s, q_{ac} \in Q$.
- 2. Σ denotes the alphabet set of all possible letters used in the input string. We require that Σ is a finite set.
- 3. δ is the transition function, which is defined by

$$\delta: Q \setminus \{q_{ac}\} \times Q \setminus \{q_s\} \to \mathcal{R}$$
$$(q_{i}, q_i) \mapsto L_{ii} = \delta(q_i, q_i)$$

For clarity, we define \mathcal{R} is the set of all regular expressions over Σ .

- 4. q_0 is an element in Q, which is called the start state.
- 5. $F \subset Q$ is a subset of Q, which contains all accepted states.

In the following text, we shall write *GNFA* to denote "generalized non-deterministic finite automaton".

We also can define the concept of accepted strings.

Definition 15 (Accepted string). Let $\mathcal{M} = (Q, \Sigma, \delta, q_s, q_{ac})$ be a given GNFA. We say a string $s = s_1 s_2 \cdots s_n \ (s_i \in \Sigma^*)$ is *accepted* (*recognized*) by \mathcal{M} if there is a sequence of states

$$\langle q_s = q_0, q_1, \dots, q_{n-1}, q_n = q_{ac} \rangle$$

such that

$$s_i \in \delta(q_{i-1}, q_i)$$
 for all $1 \le i \le n$.

It is worth noting that $\delta(q_{i-1}, q_i)$ is a language by the definition.

Lemma 1. Let $\mathcal{M} = (Q, \Sigma, \delta, q_s, q_{ac})$ be a GNFA with $|Q| \ge 3$. Define a new GNFA $\mathcal{M}' = (Q', \Sigma, \delta', q_s, q_{ac})$ by removing a state $q_{rip} \in Q \setminus \{q_s, q_{ac}\}$. More precisely, the new machine \mathcal{M}' after the removal has to meet the conditions:

- 1. $Q' = Q \setminus \{q_{\text{rip}}\}.$
- 2. For any two states $s, t \in Q'$, we define

$$\delta'(s,t) = \delta(s,t) \cup \delta(s,q_{\rm rip}) \circ \delta(q_{\rm rip},q_{\rm rip})^* \circ \delta(q_{\rm rip},t).$$

Then $L(\mathcal{M}) = L(\mathcal{M}')$.

Lemma 2. Let $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$ be a DFA. We now define a GNFA $\mathcal{M}' = (Q \cup \{q_s, q_{ac}\}, \Sigma, \delta', q_s, q_{ac}\})$ by

$$\delta'(s,t) = \begin{cases} \{\sigma \in \Sigma : \delta(s,\sigma) = t\} & \text{if } s \in Q \text{ and } t \in Q \\ \{\varepsilon\} & \text{if } s = q_s \text{ and } t = q_0 \\ \{\varepsilon\} & \text{if } s \in F \text{ and } t = q_{ac} \end{cases}$$

$$\emptyset \qquad \text{otherwise}$$

Then $L(\mathcal{M}) = L(\mathcal{M}')$.

Both two lemmas are easy to verify. We now can prove Theorem 13 with these two lemmas.

Proof of Theorem 13. By Definition 12 and Theorem 11, we easily see that a language is regular if it is regular expression. Now suppose L is a regular language, then by Lemma 2, there is a GNFA $\mathcal{M} = (Q, \Sigma, \delta, q_s, q_{ac})$ that recognize L. By applying (|Q|-2) times Lemma 1, we remove all the states in $Q \setminus \{q_s, q_{ac}\}$. Hence we get a GNFA $\mathcal{M}_f = (\{q_s, q_{ac}\}, \Sigma, \delta_f, q_s, q_{ac})$ which only have two states $\{q_s, q_{ac}\}$. Thus, $L(\mathcal{M}) = L(\mathcal{M}_f) = \delta_f(q_s, q_{ac}) \in \mathcal{R}$.

Theorem 16 (Pumping Lemma). Suppose L is a regular language over Σ . Then there exists $p \in \mathbb{N}$ such that for all $s \in L$ with $|s| \ge p$, there are strings $x, y, z \in \Sigma^*$ such that s = xyz, |y| > 0, $|xy| \le p$, and

$$s = xy^k z \in L$$
 whenever $k \in \mathbb{N} \cup \{0\}.$

In this case, we call p the pumping length.

Although this theorem is called the pumping lemma, I still label it as a theorem according to its importance on solving problems.

Proof. Let $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$ be a DFA that recognize L. We let p = |Q|. Now given any string $s \in L$ with $|s| \ge p$. Write $s = s_1 s_2 \cdots s_n$ ($s_i \in \Sigma$). By the definition, there is a sequence of states

$$\langle q_0, q_1, \dots, q_n \rangle$$

such that

$$q_i = \delta(q_{i-1}, s_i)$$
 for all $1 \le i \le n$,

and $q_n \in F$. Since $n \ge p$, it follows by the pigeon's hole principle that there have to be two indices $0 \le l < r \le p$ such that $q_l = q_r$. It is now clear that the sequence

$$q_0 \xrightarrow{x} q_l \xrightarrow{y^k} q_r \xrightarrow{z} q_n$$

recognizes xy^kz , therefore $xy^kz \in L$ for all $k \in \mathbb{N} \cup \{0\}$. Note that $p \ge r > l$, we obtain $|xy| \le p$ and |y| > 0.

Corollary. Given a language L over Σ . If for all $p \in \mathbb{N}$, there exists a string $s \in A$ with $|s| \ge p$ such that for all $x, y, z \in \Sigma^*$ satisfying s = xyz, |y| > 0, and $|xy| \le p$, there is a $k \in \mathbb{N}$ such that $xy^kz \notin L$. Then we may conclude that L is not regular.

2 Context-Free Languages

Definition 17 (Context-free grammars). A 4-tuple $G = (V, \Sigma, R, S)$ is said to be a *context-free grammar* if the following conditions are met:

- 1. *V* is the variable set. We require that *V* is finite and non-empty.
- 2. Σ is the terminal alphabet set. We also require that Σ is finite, non-empty and $V \cap \Sigma = \emptyset$.
- 3. R is the rules of the grammar. R is a finite subset of $V \times (V \cup \Sigma)^*$. If $(v,s) \in R$, it means we can replace $v \in V$ with the string s when we make up a sentence. We often write $v \to s$ for $(v,s) \in R$.
- 4. $S \in V$ is the start variable.

In the following text, we shall write CFG to denote "context-free grammar".

Definition 18 (Context-free languages). Given a context-free grammar $\mathcal{G} = (V, \Sigma, R, S)$. Consider a string of the form uAv, where $u, v \in (V \cup \Sigma)^*$ and $A \in V$. We write

$$uAv \Rightarrow uwv \qquad (w \in (V \cup \Sigma)^*)$$

if $(A, w) \in R$. In this case, we say uAv directly yields uwv (with respect to the CFG G).

Now suppose we have two string u, v over $(V \cup \Sigma)$. We write $u \stackrel{*}{\Rightarrow} v$ if u = v or there are some $u_i \in (V \cup \Sigma)^*$ $(1 \le i \le n, n \in \mathbb{N} \cup \{0\})$ such that

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n \Rightarrow v.$$

We now define the *context-free language* L(G) of the CFG G is the language

$$\{w \in \Sigma^* : S \stackrel{*}{\Rightarrow} w\}.$$

We shall write CFL to denote "context-free language".

We now give an example of a grammar.

Example 19. We consider the grammar

$$\langle expr \rangle \rightarrow \langle expr \rangle + \langle expr \rangle | \langle expr \rangle \times \langle expr \rangle | (\langle expr \rangle) | a$$

where $\langle expr \rangle$ is the only variable (therefore it is the start variable) and a is any terminal character. It

is clear that $a \times a + a$ has two ways to generate, as follows:

$$\langle expr \rangle \Rightarrow \langle expr \rangle + \langle expr \rangle \Rightarrow \langle expr \rangle \times \langle expr \rangle + \langle expr \rangle$$

 $\Rightarrow a \times \langle expr \rangle + \langle expr \rangle \Rightarrow a \times a + \langle expr \rangle \Rightarrow a \times a + a$
 $\langle expr \rangle \Rightarrow \langle expr \rangle \times \langle expr \rangle \Rightarrow a \times \langle expr \rangle$
 $\Rightarrow a \times \langle expr \rangle + \langle expr \rangle \Rightarrow a \times a + \langle expr \rangle \Rightarrow a \times a + a$

People would like to interpret the first expression as $(a \times a) + a$ and the second as $a \times (a + a)$ according to the approach we generate the sentence (string).

This example shows the concept of ambiguity, in general, if a sentence can be generated by two different ways, then we may say the sentence is ambiguity. More rigorously, we have the following

Definition 20 (Ambiguity). Let \mathcal{G} be a grammar. We say $S = u_0 \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k$ is a *leftmost derivation* if for each $u_i \Rightarrow u_{i+1}$, we only replace the leftmost variable with a string over $V \cup \Sigma$ by the rules R. A string $s \in L(\mathcal{G})$ is said to be *ambiguous* if there are two different leftmost derivation $S \stackrel{*}{\Rightarrow} s$. A grammar \mathcal{G} is called *ambiguous* if there is a ambiguous string $s \in L(\mathcal{G})$.

Definition 21 (Inherently ambiguous). We say a context-free language L is *inherently ambiguous* if for any CFG \mathcal{G} that generates L, \mathcal{G} is ambiguous.

2.1 Chomsky Normal Form

In this subsection, we discuss a simpler grammar called Chomsky normal form. Later we will see that each CFG is equivalent to a Chomsky normal form.

Definition 22 (Chomsky normal form). A CFG \mathcal{G} is said to be in *Chomsky normal form* if every rule is of the form

$$A \to BC$$
 or $A \to \sigma$,

where $\sigma \in \Sigma$ is a terminal character and A, B, and C are any variables ——except that B and C may not be the start variable. In addition, we permit the rule $S \to \epsilon$.

Theorem 23. Any context-free language L is generated by CFG in Chomsky normal form.

2.2 Pushdown Automata and Context-Free Language

In this subsection, we will introduce another automata which recognize CFLs. To put it simply, a pushdown automaton is an NFA with a stack memory. Strictly speaking, we have the following

Definition 24 (Pushdown automaton). A 6-tuple $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is said to be a *pushdown automaton* if the following conditions are met:

- 1. *Q* is the set of all *states*. We require that *Q* is non-empty and finite.
- 2. Σ denotes the *alphabet set* of all possible letters used in the input string. We require that Σ is a finite set.
- 3. Γ denotes the *stack alphabet set* of all possible letters used in the stack memory. We require that Γ is a finite set.
- 4. δ is the *transition function*, which has the domain and co-domain as

$$\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$$

where $(q^+, \gamma') \in \delta(q, \sigma, \gamma)$ means that if the current state is q, the input is σ and the top of the stack is γ , then one of the possible operation is move to the state q^+ and change the top of the stack from γ to γ' . If $(q^+, \gamma') \in \delta(q, \sigma, \gamma)$, we often write the transition $q \to q^+$ with $\sigma, \gamma \to \gamma'$ to denote the link.

- 5. q_0 is an element in Q, which is called the *start state*.
- 6. $F \subset Q$ is a subset of Q, which contains all accepted states.

In the following text, we shall write *PDA* to denote "pushdown automaton".

Similarly, we have

Definition 25 (Accepted string). Let \mathcal{M} be a given PDA. We say a string $s = s_1 s_2 \cdots s_n$ (s_i is possibly ϵ) over Σ is *accepted* (*recognized*) by \mathcal{M} if there are a sequence of states $\langle q_0, q_1, \dots, q_n \rangle$ and two sequence of characters $\langle a_1, \dots, a_n \rangle$ and $\langle b_1, \dots, b_n \rangle$ such that

- 1. $q_n \in F$, namely, the final state is accepted.
- 2. $(q_i, b_i) \in \delta(q_{i-1}, s_i, a_i)$ for all i = 1, ..., n.
- 3. There exist strings $w_0, w_1, ..., w_n \in \Gamma^*$ such that

$$w_{i-1} = a_i t_i$$
 and $w_i = b_i t_i$

for all i = 1, ..., n. Note that it is possible that a_i or b_i is ϵ .

Definition 26 (Language of a DFA). Let \mathcal{M} be a given PDA. Then $L(\mathcal{M})$ denotes the set of all strings recognized by \mathcal{M} .

Lemma 3. Let $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a given PDA. Then there exists a PDA \mathcal{M}' recognizing the same language as \mathcal{M} such that

1. |F| = 1, that is, there is only a single accepted state.

2. The stack is empty before accepted. That is, we added another constraint

$$w_0 = w_n = \epsilon$$

on the requirements of the sequences (q_i) , (a_i) , and (b_i) in Definition 25.

3. Each transition is a pop or push operation. That is, if $(q^+, \gamma') \in \delta(q, \sigma, \gamma)$, then we require that exactly one of the character $\{\gamma, \gamma'\}$ has to be ϵ .

Theorem 27. A language L is a CFL if and only if L is recognize by a PDA \mathcal{M} .