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ABSTRACT

這篇筆記主要是因為在預習線性代數二的時候，常常發現很多重要的定理都記不太

起來，並且老師在下學期沒有選定指定的參考書，所以我就寫了這份筆記。主要是參考

謝銘倫老師的影片 [3]，以及著名的線性代數教科書 [2]所寫。
內容目前涵蓋了商空間、對偶空間以及內積空間的大部分內容，甚至比 “Linear

Algebra”[2]中還要多東西，像是Hilbert space。不過我盡量把證明寫的精簡一點，同時
我也省去了所有的範例。

I wrote this note because I often found that I could not remember many important
theorems when I was studying Linear Algebra II, and my teacher did not choose a refer-
ence book for the next semester. The main reference is Professor Ming-Lun Hsieh’s video
[3], and the famous linear algebra textbook [2].

The content now covers most of the quotient space, dual space, and inner product
space, even more than in “Linear Algebra”[2], like Hilbert space. I have tried to keep the
proof as concise as possible, and I have also omitted all the examples.
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1 Quotient and dual spaces

1.1 Quotient space
Definition 1 (Quotient space). Let 𝑉 be a vector space and let𝑊 be its subspace. Define an
equivalence relation ∼ on 𝑉 such that

𝑣1 ∼ 𝑣2 if 𝑣1 − 𝑣2 ∈ 𝑊.

It is easy to verify that ∼ is indeed an equivalence relation on 𝑉. For each 𝑣0 ∈ 𝑉, define
[𝑣0] = {𝑣 ∈ 𝑉 ∶ 𝑣 ∼ 𝑣0} the equivalence class of 𝑣0. Then, {[𝑣] ∶ 𝑣 ∈ 𝑉} is called the quotient
space 𝑉/𝑊.

Remark. The quotient space 𝑉/𝑊 is equipped with a natural linear structure, namely,
⎧⎪⎪⎨
⎪⎪⎩
[𝑣1] + [𝑣2] = [𝑣1 + 𝑣2], for all 𝑣1, 𝑣2 ∈ 𝑉
𝑐[𝑣1] = [𝑐𝑣1], for all 𝑣1 ∈ 𝑉 and 𝑐 ∈ 𝐹

Although it is crucial that we shall check these natural addition and scalar multiplication are
“well-defined”, we omit here.

Definition 2 (Quotient maps). There is a natural surjective map

𝜋 ∶ 𝑉 → 𝑉/𝑊
𝑣 ↦ [𝑣]

which is called the quotient map. Moreover, it is a linear transformation.

Remark.
ker𝜋 = {𝑣 ∈ 𝑉 ∶ 𝜋(𝑣) = [0]}

= {𝑣 ∈ 𝑉 ∶ [𝑣] = [0]}
= {𝑣 ∈ 𝑉 ∶ 𝑣 − 0 ∈ 𝑊}
= 𝑊.

Corollary. It follows from the dimension formula that dim𝐹𝑉/𝑊 = dim𝐹𝑉 −dim𝐹𝑊 when-
ever 𝑉 is finite dimensional.

Here we give an alternative proof without using the dimensional formula. Since 𝑉 has
finite dimension, let ℬ = {𝑤1, 𝑤2, … , 𝑤𝑠} be a basis of𝑊 and extend ℬ to𝒜 = {𝑤1, 𝑤2, … , 𝑤𝑟} a
basis of 𝑉. We claim that {[𝑤𝑠+1], … , [𝑤𝑠]} is a basis of 𝑉/𝑊. To see this, we shall show that:

1. The set {[𝑤𝑠+1], … , [𝑤𝑟]} generates 𝑉/𝑊.
Suppose [𝑣] ∈ 𝑉/𝑊. Let 𝑣 = ∑𝑟

𝑖=1 𝛼𝑖𝑤𝑖, then

[𝑣] =

⎡
⎢⎢⎢⎢⎢⎣

𝑟
􏾜
𝑖=𝑠+1

𝛼𝑖𝑤𝑖

⎤
⎥⎥⎥⎥⎥⎦ =

𝑟
􏾜
𝑖=𝑠+1

𝛼𝑖[𝑤𝑖] .
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2. {[𝑤𝑠+1], … , [𝑤𝑟]} is a linear independent set over 𝐹.
Suppose∑𝑟

𝑖=𝑠+1 𝛼𝑖 ⋅ [𝑤𝑖] = [0], for some 𝛼𝑖 ∈ 𝐹. Then,
⎡
⎢⎢⎢⎢⎢⎣

𝑟
􏾜
𝑖=𝑠+1

𝛼𝑖𝑤𝑖

⎤
⎥⎥⎥⎥⎥⎦ = [0]

⟺
𝑟
􏾜
𝑖=𝑠+1

𝛼𝑖𝑤𝑖 ∈ 𝑊

⟺
𝑟
􏾜
𝑖=𝑠+1

𝛼𝑖𝑤𝑖 =
𝑠
􏾜
𝑗=1
𝛽𝑗𝑤𝑗, for some 𝛽𝑗 ∈ 𝐹.

We conclude that 𝛼𝑖 are all zeros, since𝒜 is a basis of 𝑉.
Discussions above show that dim𝐹𝑉/𝑊 = 𝑟 − 𝑠 = dim𝐹𝑉 − dim𝐹𝑊. Now, we shall study
some properties about the quotient space 𝑉/𝑊. The next theorem characterize the quotient
space 𝑉/𝑊 by the following universal property.
Theorem 3. Let 𝑇 be a linear transformation from 𝑉 to 𝑈, such that ker𝑇 contains 𝑊, namely
𝑊 ⊂ ker𝑇. Then, 𝑇 factors through 𝜋 uniquely. That is, there exists a unique linear transformation
𝑆 ∶ 𝑉/𝑊 → 𝑈 such that

𝑇 = 𝑆 ∘ 𝜋.
Proof. Define 𝑆 ∶ 𝑉/𝑊 → 𝑈 by

𝑆([𝑣]) = 𝑇(𝑣).

We first show that 𝑆 is a well-defined map, namely, if [𝑣] = [𝑣′], then 𝑇(𝑣) = 𝑇(𝑣′). Note
that [𝑣] = [𝑣′] ⟹ 𝑣 − 𝑣′ ∈ 𝑊 ⊂ ker𝑇, we conclude 𝑇(𝑣) = 𝑇(𝑣′). By definition, 𝑆 is a linear
transformation and 𝑆∘𝜋 = 𝑇. The uniqueness of such 𝑆 follows from the surjectivity of 𝜋.

Theorem 3 implies that the following diagram commutes.

𝑉 𝑈

𝑉/𝑊

𝑇

𝜋 𝑆

Remark. The quotient space 𝑉/𝑊 with the quotient map 𝜋 is the unique vector space satis-
fying the theorem. That is, if we are given 𝜋′ ∶ 𝑉 → 𝑉′ satisfying the property: for every
linear transformation 𝑇 ∶ 𝑉 → 𝑈 with𝑊 ⊂ ker𝑇, there exists a unique 𝑆′ ∶ 𝑉′ → 𝑈 such that
𝑆′ ∘ 𝜋′ = 𝑇. Then, 𝑉′ ≃ 𝑉/𝑊 uniquely.
Proof. From the assumptions, we have

⎧⎪⎪⎨
⎪⎪⎩
∃! 𝑆 ∶ 𝑉/𝑊 → 𝑉′, such that 𝜋′ = 𝑆 ∘ 𝜋
∃! 𝑆′ ∶ 𝑉′ → 𝑉/𝑊, such that 𝜋 = 𝑆′ ∘ 𝜋′

.
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This shows 𝑆 ∘ 𝑆′ = Id𝑉′ ; 𝑆′ ∘ 𝑆 = Id𝑉/𝑊 (using Theorem 3 again.) We conclude 𝑉′ ≃ 𝑉/𝑊
uniquely.

Corollary. Let 𝑇 ∶ 𝑉 → 𝑊 be a linear transformation. Then,

𝑉/ker𝑇 ≃ Im𝑇.

Hence, dim𝐹𝑉/ker𝑇 = dim𝐹 Im𝑇.

Proof. From Theorem 3, we have: there exists a unique 𝑆 ∶ 𝑉/ker𝑇 → 𝑊, such that 𝑇 = 𝑆 ∘ 𝜋.
It follows from the surjectivity of 𝜋 that Im𝑆 = Im𝑇. We claim that 𝑆 is injective. Note that

ker 𝑆 = {[𝑣] ∈ 𝑉/ker𝑇 ∶ 𝑆([𝑣]) = 0}
= {[𝑣] ∈ 𝑉/ker𝑇 ∶ 𝑇(𝑣) = 0}
= {[𝑣] ∈ 𝑉/ker𝑇 ∶ 𝑣 ∈ ker𝑇}
= {[0]} .

Thus, S is a bijection. This completes the proof.

Now, let 𝑇 ∶ 𝑉 → 𝑉 be a linear transformation and let𝑊 ⊂ 𝑉 be a 𝑇-invariant subspace.
Then, 𝑇 induce a linear transformation �̃� on 𝑉/𝑊 define by:

�̃� ∶ 𝑉/𝑊 → 𝑉/𝑊
[𝑣] ↦ [𝑇(𝑣)]

.

This is a well-defined map since

[𝑣] = [𝑣′] ⟹ 𝑣 − 𝑣′ ∈ 𝑊
⟹ 𝑇(𝑣) − 𝑇(𝑣′) = 𝑇(𝑣 − 𝑣′) ∈ 𝑊
⟹ [𝑇(𝑣)] = [𝑇(𝑣′)].

Now, let ℬ = {𝑣1, 𝑣2, … , 𝑣𝑠} be a basis of𝑊, and extend it to𝒜 = ℬ⊔ℬ′, a basis of 𝑉. We
have shown that [ℬ′] = {[𝑣] ∶ 𝑣 ∈ ℬ′} is a basis of 𝑉/𝑊. Then, we have

[𝑇]𝒜 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[𝑇|𝑊]ℬ ∗

0 􏿮�̃�􏿱
[ℬ′]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We thus have
⎧⎪⎪⎨
⎪⎪⎩
ch𝑇(𝑥) = ch𝑇|𝑊 (𝑥) ⋅ ch�̃�(𝑥)

m𝑇(𝑥) is divisible by m𝑇|𝑊 (𝑥)
.

Corollary. If 𝑇 is diagonalizable, then so is �̃�.

The corollary follows from the fact thatm𝑇(𝑥) is divisible bym�̃�(𝑥). We next shall discuss
the concept of dual spaces.
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1.2 Dual space
Definition 4 (Dual space). Let 𝑉 be a vector space over 𝐹. It is well-known that 𝐿(𝑉, 𝐹) is
a vector space over 𝐹. It is called the dual space of 𝑉, and its elements are called linear
functionals of 𝑉. We often write 𝑉∨ to denote the dual space of 𝑉.

Recall that:

Given two vector spaces 𝑉,𝑊 over 𝐹. Then we have 𝐿(𝑉,𝑊) is a vector space
over 𝐹 and

dim𝐹 𝐿(𝑉,𝑊) = dim𝐹𝑉 ⋅ dim𝐹𝑊.

We conclude that dim𝐹𝑉∨ = dim𝐹𝑉 if dim𝐹𝑉 < ∞. Here we give an alternative proof.

Theorem 5. Suppose 𝑉 is a finite dimensional vector space over 𝐹. Then, dim𝐹𝑉∨ = dim𝐹𝑉.

Proof. Let ℬ = {𝑣1, 𝑣2, … , 𝑣𝑛} be a basis of 𝑉. Let us consider the following linear functionals:

𝑣∨𝑖 ∶ 𝑉 → 𝐹
𝑛
􏾜
𝑖=1
𝛼𝑖 ⋅ 𝑣𝑖 ↦ 𝛼𝑖

We claim that ℬ∨ = 􏿺𝑣∨1 , 𝑣∨2 , … , 𝑣∨𝑛 􏿽 is a basis of 𝑉∨. We first show that ℬ∨ is linear indepen-
dent. Suppose there exist 𝛽𝑖 ∈ 𝐹 such that

𝑛
􏾜
𝑖=1
𝛽𝑖𝑣∨𝑖 = 0,

then
𝑛
􏾜
𝑖=1
𝛽𝑖𝑣∨𝑖 􏿴𝑣𝑗􏿷 = 0.

This shows

𝛽𝑖 = 0, for all 𝑖 = 1, 2, … , 𝑛.

Next we show that ℬ∨ generate 𝑉∨. Given ℓ ∈ 𝑉∨. Then, from the linearity of ℓ, we have

ℓ =
𝑛
􏾜
𝑖=1
ℓ(𝑣𝑖) ⋅ 𝑣∨𝑖 .

We conclude that ℬ∨ is a basis of 𝑉∨.

Remark. The basis ℬ∨ is called the dual basis of ℬ.

Given a linear transformation 𝑇 ∶ 𝑉 → 𝑊, it induces a linear transformation 𝑇∨ ∶ 𝑊∨ →
𝑉∨ between dual spaces defined by:

𝑇∨(ℓ)(𝑣) ∶= ℓ(𝑇(𝑣)), for ℓ ∈ 𝑊∨ and 𝑣 ∈ 𝑉.

It is easy to verify that 𝑇∨ is a linear transformation.
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Theorem 6. Let 𝑉,𝑊 be two finite dimensional vector spaces over 𝐹. Let 𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} and
ℬ = {𝑤1, 𝑤2, … , 𝑤𝑚} be bases of 𝑉 and𝑊, respectively. Given 𝑇 ∶ 𝑉 → 𝑊. Then,

[𝑇]t𝒜,ℬ = 􏿮𝑇∨􏿱ℬ∨,𝒜∨ .

Proof. Let 𝐴 ∶= [𝑇]𝒜,ℬ = (𝑎𝑖𝑗)𝑛×𝑛 and 𝐵 ∶= 􏿮𝑇∨􏿱
ℬ∨,𝒜∨ = (𝑏𝑖𝑗)𝑛×𝑛. From the definition, we have

𝑇(𝑣𝑗) =
𝑚
􏾜
𝑖=1
𝑎𝑖𝑗𝑤𝑖

𝑇∨(𝑤∨𝑖 ) =
𝑛
􏾜
𝑗=1
𝑏𝑗𝑖𝑣∨𝑗

.

Then,

𝑏𝑗𝑖 = 𝑇∨(𝑤∨𝑖 )(𝑣𝑗) = 𝑤∨𝑖 (𝑇(𝑣𝑗)) = 𝑤∨𝑖

⎛
⎜⎜⎜⎜⎜⎝
𝑚
􏾜
𝑖=1
𝑎𝑖𝑗𝑤𝑖

⎞
⎟⎟⎟⎟⎟⎠ = 𝑎𝑖𝑗.

This proves the theorem.

Theorem 7. Let 𝑉 be a vector space and let𝑊 ⊂ 𝑉 be a subspace. Then,

(𝑉/𝑊)∨ ≃ 􏿺ℓ ∈ 𝑉∨ ∶ 𝑊 ⊂ ker ℓ􏿽 .

Proof. We have known that there is a natural map 𝜋 ∶ 𝑉 ↠ 𝑉/𝑊. We claim that 𝜋∨ is the
isomorphism that bijects (𝑉/𝑊)∨ and 􏿺ℓ ∈ 𝑉∨ ∶ 𝑊 ⊂ ker ℓ􏿽. We first show that 𝜋∨ is injective.
Suppose 𝜋∨(ℓ) = 0, for some ℓ ∈ (𝑉/𝑊)∨. Then,

𝑙(𝜋(𝑣)) = 0, for all 𝑣 ∈ 𝑉
⟹ ℓ([𝑣]) = 0, for all 𝑣 ∈ 𝑉.

This shows the injectivity of 𝜋∨. Hence, (𝑉/𝑊)∨ ≃ Im𝜋∨. It suffices to show that Im𝜋∨ =
􏿺ℓ ∈ 𝑉∨ ∶ 𝑊 ⊂ ker ℓ􏿽.

1. Im𝜋∨ ⊂ 􏿺ℓ ∈ 𝑉∨ ∶ 𝑊 ⊂ ker ℓ􏿽.
For each 𝑆 ∈ (𝑉/𝑊)∨ and 𝑤 ∈ 𝑊, we have

𝜋∨(𝑆)(𝑤) = 𝑆 (𝜋(𝑤)) = 𝑆 ([𝑤]) = 𝑆 ([0]) = 0.

2. 􏿺ℓ ∈ 𝑉∨ ∶ 𝑊 ⊂ ker ℓ􏿽 ⊂ Im𝜋∨.
Let ℓ ∈ 𝑉∨ such that𝑊 ⊂ ker ℓ. Theorem 3 asserts that there exists a unique 𝑆 ∶ 𝑉/𝑊 →
𝐹 such that ℓ = 𝑆 ∘ 𝜋. This implies 𝜋∨(𝑆) = ℓ.

Discussions above complete the proof.

Corollary. Let 𝐴 ∈ 𝑀𝑚×𝑛(𝐹). Then, rank𝐴 = rank𝐴t.

Proof. Let 𝑉 = 𝐹𝑛,𝑊 = 𝐹𝑚 and let 𝑇 ∶ 𝑉 → 𝑊 defined by

𝑇(𝑣) = 𝐴 ⋅ 𝑣.
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Then it is equivalent to prove

dim Im𝑇 = dim (Im𝑇∨).

By Theorem 7,

(𝑊/Im𝑇)∨ ≃ 􏿺ℓ ∈ 𝑊∨ ∶ Im𝑇 ⊂ ker ℓ􏿽 = 􏿺ℓ ∈ 𝑊∨ ∶ 𝑇∨(ℓ) = 0􏿽 = ker(𝑇∨). (1)

Thus,

dim𝑊 − dim Im𝑇 = dim𝑊/Im𝑇 = dim (𝑊/Im𝑇)∨ = dim𝑊∨ − dim Im(𝑇∨).

This completes the proof.

Theorem 8. Let𝑉 and𝑊 are two finite vector spaces, and let 𝑇 ∶ 𝑉 → 𝑊 be a linear transformation.
Then,

1. 𝑇 is surjective if and only if 𝑇∨ is injective.

2. 𝑇 is injective if and only if 𝑇∨ is surjective.

Proof. In the proof of the previous corollary, we have shown in equation 1 that

(𝑊/Im𝑇)∨ ≃ ker(𝑇∨),

this proves the first assertion. Similarly, we have

(𝑉/ker𝑇)∨ ≃ 􏿺ℓ ∈ 𝑉∨ ∶ ker𝑇 ⊂ ker ℓ􏿽 . (2)

We claim the set on the right hand side is Im(𝑇∨).

1. 􏿺ℓ ∈ 𝑉∨ ∶ ker𝑇 ⊂ ker ℓ􏿽 ⊂ Im(𝑇∨).
Let ℓ ∈ 𝑉∨ such that ker𝑇 ⊂ ker ℓ. It is well-known that there exists a subspace 𝑋 ⊂ 𝑊
such that𝑊 = Im𝑇 ⊕ 𝑋. Consider a transformation 𝑠 ∶ 𝑊 → 𝐹 defined by:

𝑠(𝑤) = ℓ(𝑣),

where 𝑤 = 𝑇(𝑣) + 𝑥, for some 𝑣 ∈ 𝑉 and 𝑥 ∈ 𝑋. This is a well-defined map, since
ker𝑇 ⊂ ker ℓ. Note that 𝑠 is a linear transformation and ℓ = 𝑠 ∘ 𝑇 = 𝑇∨(𝑠). This implies
􏿺ℓ ∈ 𝑉∨ ∶ ker𝑇 ⊂ ker ℓ􏿽 ⊂ Im(𝑇∨).

2. Im(𝑇∨) ⊂ 􏿺ℓ ∈ 𝑉∨ ∶ ker𝑇 ⊂ ker ℓ􏿽.
Let ℓ ∈ Im(𝑇∨). Then, there exists 𝑠 ∈ 𝑊∨ such that ℓ = 𝑇∨(𝑠) = 𝑠 ∘ 𝑇, thus ker𝑇 ⊂ ker ℓ.

Discussions above with equation 2 show that

(𝑉/ker𝑇)∨ ≃ Im(𝑇∨),

which is equivalent to the second assertion.

Remark. In the class, the teacher proved with another approach, which use the following
property:
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Let 𝑉 be a finite dimensional vector space, and let 𝑉∨∨ be the dual space
of 𝑉∨, then there is a natural identification, that is, there is an isomorphism
𝜙 ∶ 𝑉 → 𝑉∨∨ defined by

𝜙 ∶ 𝑥 ↦ 􏿴�̂� ∶ 𝑓 ↦ 𝑓(𝑥)􏿷 , 𝑓 ∈ 𝑉∨.

Next, we show that why we shall study dual spaces by the following theorem.

Theorem 9. Let 𝑉 be a finite dimensional vector space over 𝐹. Let ℓ1, ℓ2, … , ℓ𝑠 ∈ 𝑉∨ be linearly
independent. Suppose 𝑏1, 𝑏2, … , 𝑏𝑠 ∈ 𝐹 and put

Ξ = 􏿺𝑣 ∈ 𝑉 ∶ ℓ𝑖(𝑣) = 𝑏𝑖, for all 1 ≤ 𝑖 ≤ 𝑠􏿽 .

Then, Ξ ≠ ∅.

Proof. Consider the linear transformation 𝑇 ∶ 𝑉 → 𝐹𝑠 defined by:

𝑇 ∶ 𝑣 ↦ (ℓ1(𝑣), ℓ2(𝑣), … , ℓ𝑠(𝑣)) .

Then, dim (ker𝑇) = dim𝑉 − 𝑠. Here we omit the details of the proof.

2 Inner product space
Definition 10 (Inner product). Let 𝑉 be a vector space over 𝐹, where 𝐹 = ℝ or ℂ. A function
⟨⋅, ⋅⟩ ∶ 𝑉 × 𝑉 → 𝐹 is called an inner product if the following conditions are satisfied:

1. 􏾉𝑥 + 𝑦, 𝑧􏽼 = ⟨𝑥, 𝑧⟩ + 􏾉𝑦, 𝑧􏽼, for all 𝑥, 𝑦, 𝑧 ∈ 𝑉.

2. 􏾉𝑐𝑥, 𝑦􏽼 = 𝑐 ⋅ 􏾉𝑥, 𝑦􏽼, for all 𝑥, 𝑦 ∈ 𝑉 and 𝑐 ∈ 𝐹.

3. 􏾉𝑥, 𝑦􏽼 = 􏾉𝑦, 𝑥􏽼, for all 𝑥, 𝑦 ∈ 𝑉.

4. ⟨𝑥, 𝑥⟩ ≥ 0, for all 𝑥 ∈ 𝑉 and ⟨𝑥, 𝑥⟩ = 0 if and only if 𝑥 = 0.

We write (𝑉, ⟨⋅, ⋅⟩) for a vector space 𝑉 together with an inner product structure ⟨⋅, ⋅⟩. In the
following text, 𝐹 still stands for ℝ or ℂ unless otherwise stated.

We could also define the concept of norm (or length) of a vector 𝑣 ∈ 𝑉.

Definition 11 (Norm). For each 𝑣 ∈ 𝑉, define the norm of 𝑣 as ‖𝑣‖ = ⟨𝑣, 𝑣⟩1/2.

Theorem 12 (Riesz representation Theorem on a finite dimensional space). Let (𝑉, ⟨⋅, ⋅⟩) be
an inner product space. Then,

Φ ∶ 𝑉 → 𝑉∨

𝑣 ↦ Φ(𝑣)(𝑥) = ⟨𝑥, 𝑣⟩

is an isomorphism.

Proof. We first prove that Φ is injective. Note that

kerΦ = {𝑣 ∈ 𝑉 ∶ ⟨𝑥, 𝑣⟩ = 0, for all 𝑥 ∈ 𝑉} = {0} .

Since 𝑉 is finite dimensional, we have dim𝐹𝑉 = dim𝐹𝑉∨, thus Φ is an isomorphism.
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In other words, inner product ⟨⋅, ⋅⟩ identifies 𝑉 with its dual space 𝑉∨ when 𝑉 is finite
dimensional. We now start study how to represent an inner product structure with a matrix.
Suppose 𝑉 is a finite dimensional vector space, and let𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a basis of 𝑉. For
any 𝑥, 𝑦 ∈ 𝑉, there exist 𝛼𝑖, 𝛽𝑖 such that

𝑥 =
𝑛
􏾜
𝑖=1
𝛼𝑖 ⋅ 𝑣𝑖 ; 𝑦 =

𝑛
􏾜
𝑗=1
𝛽𝑗 ⋅ 𝑣𝑗.

Then,

􏾉𝑥, 𝑦􏽼 = 􏾋
𝑛
􏾜
𝑖=1
𝛼𝑖 ⋅ 𝑣𝑖,

𝑛
􏾜
𝑗=1
𝛽𝑗 ⋅ 𝑣𝑗􏽾 =

𝑛
􏾜
𝑖=1

𝑛
􏾜
𝑗=1
𝛼𝑖𝛽𝑗 􏾊𝑣𝑖, 𝑣𝑗􏽽 .

Hence, if we let

Ω = 􏿵􏾊𝑣𝑖, 𝑣𝑗􏽽􏿸 ∈ 𝑀𝑛(𝐹),

we have

􏾉𝑥, 𝑦􏽼 = 􏿴𝛼1 𝛼2 … 𝛼𝑛􏿷 ⋅ Ω ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛽1
𝛽2
⋮
𝛽𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix Ω is called the matrix of ⟨ , ⟩ associated with𝒜.

Theorem 13 (change of basis). Let ℬ = {𝑤1, … , 𝑤𝑛} be another basis of 𝑉. Assume that

𝑤𝑗 =
𝑛
􏾜
𝑖=1
𝑎𝑖𝑗𝑣𝑖, for all 1 ≤ 𝑗 ≤ 𝑛.

Then,

Ω ′ = 𝐴t ⋅ Ω ⋅ 𝐴,

where Ω ′ is the matrix of ⟨ , ⟩ associated with ℬ and 𝐴 = 􏿴𝑎𝑖𝑗􏿷.

Proof. Note that

􏾊𝑤𝑖, 𝑤𝑗􏽽 = 􏾋
𝑛
􏾜
𝑘=1

𝑎𝑘𝑖𝑣𝑘,
𝑛
􏾜
𝑙=1
𝑎𝑙𝑗𝑣𝑙􏽾

=
𝑛
􏾜
𝑘=1

𝑛
􏾜
𝑙=1
𝑎𝑘𝑖 ⟨𝑣𝑘, 𝑣𝑙⟩ 𝑎𝑙𝑗

=
𝑛
􏾜
𝑘=1

𝑛
􏾜
𝑙=1
𝑎𝑖𝑘t ⟨𝑣𝑘, 𝑣𝑙⟩ 𝑎𝑙𝑗,

This proves the theorem.

Next, we shall askwhether we can define an inner product structure on𝑉 if we are given
a matrix Ω ∈ 𝑀𝑛(𝐹) and a basis 𝒜 of 𝑉. The answer is no. In fact, the matrix can define an
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inner product structure on finite dimensional 𝑉 if and only if it is positive definite. The next
theorem gives the sufficient condition for a matrix being able to define an inner product.

Theorem 14. IfΩ = 𝐵 ⋅ 𝐵∗ for some 𝐵 ∈ 𝑀𝑛(𝐹) with det𝐵 ≠ 0, then ⟨ , ⟩Ω,𝒜 is an inner product for
any choice of𝒜.

Proof. Let𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} be an arbitrary basis of 𝑉. It suffices to show the inner product
defined by Ω satisfies the fourth axiom of Definition 10. If 𝑥 ∈ 𝑉, then

𝑥 =
𝑛
􏾜
𝑖=1
𝛼𝑖 ⋅ 𝑣𝑖, for some 𝛼𝑖 ∈ 𝐹.

We have

⟨𝑥, 𝑥⟩Ω,𝒜 ∶= 􏿴𝛼1 𝛼2 … 𝛼𝑛􏿷 ⋅ Ω ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼1
𝛼2
⋮
𝛼𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 􏿴𝛼1 𝛼2 … 𝛼𝑛􏿷 ⋅ 𝐵 ⋅ 𝐵∗ ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼1
𝛼2
⋮
𝛼𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (𝑦𝐵) ⋅ (𝑦𝐵)∗ ,

where 𝑦 = 􏿴𝛼1 𝛼2 … 𝛼𝑛􏿷 is a row vector. Write 𝑦𝐵 = 􏿴𝛽1 𝛽2 … 𝛽𝑛􏿷. We get

⟨𝑥, 𝑥⟩Ω,𝒜 = 􏿴𝛽1 𝛽2 … 𝛽𝑛􏿷 ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛽1
𝛽2
⋮
𝛽𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

𝑛
􏾜
𝑖=1
|𝛽𝑖|

2
≥ 0,

and ⟨𝑥, 𝑥⟩Ω,𝒜 = 0 if and only if 𝑦 = 0. From the assumption that det𝐵 ≠ 0, it follows 𝑥 = 0 if
⟨𝑥, 𝑥⟩ = 0.

Definition 15 (Hermitian and positive definite matrix). Let Ω ∈ 𝑀𝑛(𝐹). Then,

1. Ω is said to be Hermitian if Ω ∗ = Ω.

2. Ω is said to be positive definite if Ω is Hermitian and

𝑥 ⋅ Ω ⋅ 𝑥∗ > 0, for all row vector 𝑥 ∈ 𝐹𝑛\{0}.

Remark. Let Ω ∈ 𝑀𝑛(𝐹). Define a function ⟨⋅, ⋅⟩ of two variables on the vector space 𝑉 = 𝐹𝑛
by

􏾉𝑥, 𝑦􏽼 = 𝑥 ⋅ Ω ⋅ 𝑦∗, where 𝑥 and 𝑦 are row vectors.

Then, ⟨ , ⟩ is an inner product on 𝑉 if and only if Ω is positive definite.
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2.1 Orthogonal projection
Definition 16 (Perpendicular). Let (𝑉, ⟨ , ⟩) be an inner product space. Then, we say a vector
𝑣 is perpendicular to 𝑤 if

⟨𝑣, 𝑤⟩ = 0.

We often write 𝑣 ⟂ 𝑤 to indicate two vectors are perpendicular to each other.

Note that the Pythagorean theorem holds, that is, ‖𝑣 + 𝑤‖2 = ‖𝑣‖2 + ‖𝑤‖2 if ⟨𝑣, 𝑤⟩ = 0.
Now, we can define orthogonal projection of 𝑥 to 𝑦.

Definition 17 (Orthogonal projection). Given two vectors 𝑥, 𝑦 ∈ (𝑉, ⟨ , ⟩) (𝑦 ≠ 0). Proj𝑦(𝑥) is
the vector satisfying the following two conditions:

1. Proj𝑦(𝑥) is parallel to 𝑦.

2. 𝑥 − Proj𝑦(𝑥) ⟂ 𝑦.

From this definition, we can assume that Proj𝑦(𝑥) = 𝛼 ⋅ 𝑦, for some 𝛼 ∈ 𝐹. Since 𝑥 −
Proj𝑦(𝑥) ⟂ 𝑦, we have

􏾉𝑥 − 𝛼 ⋅ 𝑦, 𝑦􏽼 = 0 ⟺ 𝛼 =
􏾉𝑥, 𝑦􏽼
􏾉𝑦, 𝑦􏽼.

We conclude that

Proj𝑦(𝑥) =
􏾉𝑥, 𝑦􏽼

􏿎𝑦􏿎
2 ⋅ 𝑦.

Lemma 1. Let 𝑥, 𝑦 ∈ (𝑉, ⟨ , ⟩) (𝑦 ≠ 0). Then,

􏿐Proj𝑦(𝑥)􏿐 ≤ ‖𝑥‖ .

Moreover, the equality holds if and only if 𝑥 is parallel to 𝑦.

Proof. It follows from the Pythagorean theorem.

Corollary. |􏾉𝑥, 𝑦􏽼| ≤ ‖𝑥‖ 􏿎𝑦􏿎, holds for all 𝑥, 𝑦 ∈ 𝑉.

It immediate follows from Lemma 1. This inequality is known as “Cauchy’s inequality”.

Corollary. 􏿎𝑥 + 𝑦􏿎 ≤ ‖𝑥‖ + 􏿎𝑦􏿎, holds for all 𝑥, 𝑦 ∈ 𝑉.

Proof. It is equivalent to prove 􏿎𝑥 + 𝑦􏿎
2
≤ (‖𝑥‖ + 􏿎𝑦􏿎)2.

􏿎𝑥 + 𝑦􏿎
2
≤ (‖𝑥‖ + 􏿎𝑦􏿎)2

⟺ 􏾉𝑥 + 𝑦, 𝑥 + 𝑦􏽼 ≤ ‖𝑥‖2 + 2 ‖𝑥‖ ⋅ 􏿎𝑦􏿎 + 􏿎𝑦􏿎
2

⟺ ‖𝑥‖2 + 􏾉𝑥, 𝑦􏽼 + 􏾉𝑦, 𝑥􏽼 + 􏿎𝑦􏿎
2
≤ ‖𝑥‖2 + 2 ‖𝑥‖ ⋅ 􏿎𝑦􏿎 + 􏿎𝑦􏿎

2

⟺ ℜ􏾉𝑥, 𝑦􏽼 ≤ ‖𝑥‖ ⋅ 􏿎𝑦􏿎 .

Note that ℜ􏾉𝑥, 𝑦􏽼 ≤ |􏾉𝑥, 𝑦􏽼| ≤ ‖𝑥‖ ⋅ 􏿎𝑦􏿎. This proves the corollary.
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In general, if we were given a subspace 𝑊 ⊂ 𝑉, we can discuss about Proj𝑊(𝑥), the
orthogonal projection of 𝑥 to𝑊.

Definition 18 (Generalization of orthogonal projection). Let𝑊 be a subspace of 𝑉 and let 𝑥
be a vector in 𝑉. Then, Proj𝑊(𝑥) is the vector satisfying the following two conditions:

1. Proj𝑊(𝑥) ∈ 𝑊.

2. 𝑥 − Proj𝑊(𝑥) ⟂ 𝑊. That is, 𝑥 − Proj𝑊(𝑥) is perpendicular to any vectors in𝑊.

The existence of Proj𝑊(𝑥) in a finite dimensional vector space 𝑉 follows from the follow-
ing theorem.

Theorem 19. Let 𝑉 be a finite dimensional inner product space and let𝑊 be a subspace of 𝑉. Define
𝑊⟂ as

𝑊⟂ ∶= 􏿺𝑣 ∈ 𝑉 ∶ ⟨𝑣, 𝑤⟩ = 0, for all 𝑤 ∈ 𝑊􏿽 .

Then,𝑊⟂ is a subspace. Moreover, 𝑉 = 𝑊 ⊕𝑊⟂.

Proof. It is easy to see that 𝑊⟂ is a subspace of 𝑉. Recall Theorem 12, we have an isomor-
phism:

𝑉 ≃ 𝑉∨

𝑣 ↦ ℓ𝑣(𝑥) = ⟨𝑥, 𝑣⟩ .

Note that the image of𝑊⟂ under this map is

􏿺ℓ ∈ 𝑉∨ ∶ 𝑊 ⊂ ker ℓ􏿽 .

By Theorem 7, we have

𝑊⟂ ≃ (𝑉/𝑊)∨ .

Thus,

dim𝐹𝑉 = dim𝐹𝑊 + (dim𝐹𝑉 − dim𝐹𝑊)
= dim𝐹𝑊 + dim𝐹𝑉/𝑊
= dim𝐹𝑊 + dim𝐹𝑊⟂.

We claim that𝑊 ∩𝑊⟂ = {0}. Suppose 𝑥 ∈ 𝑊 ∩𝑊⟂, then ⟨𝑥, 𝑥⟩ = 0. This shows that 𝑥 must
be 0. We conclude that

𝑉 = 𝑊 ⊕𝑊⟂.

If we are given a subspace 𝑊 ⊂ 𝑉 and a vector 𝑥, then according to Theorem 19, there
exist unique vectors 𝑤𝑥 ∈ 𝑊, 𝑤′𝑥 ∈ 𝑊⟂ such that

𝑥 = 𝑤𝑥 + 𝑤′𝑥.

We define Proj𝑤(𝑥) ∶= 𝑤𝑥. We now discuss a new idea of (external) direct sum of vector
spaces.
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Definition 20 (Direct sum). Let 𝑉1, 𝑉2 be two vector spaces. Define

𝑉1 ⊕ 𝑉2 ∶= {(𝑣1, 𝑣2) ∈ 𝑉1 × 𝑉2} .

This space has a natural linear structure:

(𝑣1, 𝑣2) + (𝑣′1, 𝑣′2) ∶= (𝑣1 + 𝑣′1, 𝑣2 + 𝑣′2)
𝑐(𝑣1, 𝑣2) ∶= (𝑐 ⋅ 𝑣1, 𝑐 ⋅ 𝑣2)

We shall say 𝑉1 ⊕ 𝑉2 is the external direct sum of 𝑉1 and 𝑉2.

We can check that:

If𝑊1,𝑊2 are two subspaces of 𝑉, such that𝑊1 ∩𝑊2 = {0}. Then,

𝑊1 ⊕in 𝑊2 ≃ 𝑊1 ⊕out 𝑊2,

where ⊕in is the original (internal) direct sum.

2.2 Orthonormal basis and Gram-Schimdt process
Definition 21 (Orthonormal basis). A set of vectors {𝑣𝛼 ∶ 𝛼 ∈ Λ} is an orthonormal set if
􏾊𝑣𝛼, 𝑣𝛽􏽽 = 0whenever 𝛼 ≠ 𝛽, and 􏿎𝑣𝛼􏿎 = 1 for all 𝛼 ∈ Λ. An orthonormal basis is an orthonor-
mal set which is a basis.

Lemma 2. If {𝑣1, 𝑣2, … , 𝑣𝑟} is an orthonormal set, then it is linearly independent.

Proof. Suppose there exist 𝛼𝑖 ∈ 𝐹 such that
𝑟
􏾜
𝑖=1
𝛼𝑖 ⋅ 𝑣𝑖 = 0.

Then,

0 = ⟨0, 𝑣𝑖⟩ = 􏾋
𝑟
􏾜
𝑖=1
𝛼𝑖 ⋅ 𝑣𝑖, 𝑣𝑖􏽾 = 𝛼𝑖.

This completes the proof.

Remark.

1. If dim𝐹𝑉 < ∞, then any orthonormal set of cardinality equal to 𝑛 is an orthonormal
basis.

2. Let𝒜 be an orthonormal basis. Then, Ω = 𝐼𝑛, where Ω is the matrix of ⟨ , ⟩ associated
with𝒜.

The existence of orthonormal bases in a finite dimensional inner product space follows
from the next theorem. The technique to find such a basis is knownasGram-Schmidt process.
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Theorem 22 (Gram-Schmidt process). Suppose {𝑣1, 𝑣2, … , 𝑣𝑟} is linearly independent. Then, there
exists an orthonormal set {𝑤1, 𝑤2, … , 𝑤𝑟} such that

span𝐹{𝑤1, 𝑤2, … , 𝑤𝑟} = span𝐹{𝑣1, 𝑣2, … , 𝑣𝑟}.

Proof. Define 𝑢𝑖 and 𝑤𝑖 recursively as:

𝑢1 = 𝑣1 𝑤1 =
𝑢1
‖𝑢1‖

𝑢2 = 𝑣2 − ⟨𝑣2, 𝑤1⟩ ⋅ 𝑤1 𝑤2 =
𝑢2
‖𝑢2‖

𝑢3 = 𝑣3 − 􏾉𝑣3, 𝑤2􏽼 ⋅ 𝑤2 − 􏾉𝑣3, 𝑤1􏽼 ⋅ 𝑤1 𝑤3 =
𝑢3
􏿎𝑢3􏿎

⋮ ⋮

𝑢𝑘 = 𝑣𝑘 −
𝑘
􏾜
𝑖=1
⟨𝑣𝑘, 𝑤𝑖⟩ ⋅ 𝑤𝑖 𝑤𝑘 =

𝑢𝑘
‖𝑢𝑘‖

⋮ ⋮

We claim that span𝐹{𝑣1, … , 𝑣𝑘} = span𝐹{𝑤1, … , 𝑤𝑘} and {𝑤1, … , 𝑤𝑘} is an orthonormal set, for
each 1 ≤ 𝑘 ≤ 𝑟 . It is trivial when 𝑘 = 1. Suppose this assertion is true for some 𝑘 = 𝑚 < 𝑟,
then ⟨𝑢𝑚+1, 𝑤𝑖⟩ = ⟨𝑣𝑚+1, 𝑤𝑖⟩ − ⟨𝑣𝑚+1, 𝑤𝑖⟩ = 0 for 𝑖 ≤ 𝑚. Also, 𝑣𝑚+1 ∉ span𝐹{𝑤1, … , 𝑤𝑚} =
span𝐹{𝑣1, … , 𝑣𝑚}, since {𝑣1, 𝑣2, … , 𝑣𝑟} is linearly independent. We thus have 𝑢𝑘+1 ≠ 0, this
completes the proof by mathematical induction on 𝑘.

Corollary.

1. If (𝑉, ⟨ , ⟩) is a finite dimensional inner product space over 𝐹, then an orthonormal basis
exists.

2. LetΩ be a positive definitematrix. From the remark of Definition 15,Ω defines an inner
product on 𝑉 = 𝐹𝑛. Let 𝑃 be an invertible matrix such that 𝑃𝑒𝑖 = 𝑤𝑖, where {𝑒1, … , 𝑒𝑛}
is the standard basis of 𝑉 and {𝑤1, … , 𝑥𝑛} is one orthonormal basis of 𝑉 with respect to
the inner product defined by Ω. Then, Theorem 13 asserts

𝐼𝑛 = 𝑃t ⋅ Ω ⋅ 𝑃 ⟹ Ω = 𝑃−1t ⋅ 𝑃−1.

Let 𝑄 = 𝑃−1t, then we conclude

Ω = 𝑄 ⋅ 𝑄∗.

For each positive definite matrix Ω ∈ 𝑀𝑛(𝐹), there is an invertible matrix 𝑄 ∈
𝑀𝑛(𝐹) such that Ω = 𝑄 ⋅ 𝑄∗.

Recall that in Theorem 19we have shown the existence of Proj𝑊(𝑥)when𝑊 is a subspace
of finite dimensional vector space𝑉. In fact, we can derive the same result but using aweaker
condition.

Theorem 23 (orthogonal projection revisited). Let (𝑉, ⟨ , ⟩) be an inner product space. (It could
be infinite dimensional.) Let 𝑊 ⊂ 𝑉 be a subspace with finite dimension. Then, Proj𝑊(𝑥) exists
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uniquely. In fact,

Proj𝑊(𝑥) =
𝑛
􏾜
𝑖=1
⟨𝑥, 𝑤𝑖⟩ ⋅ 𝑤𝑖,

where {𝑤1, 𝑤2, … , 𝑤𝑛} is an orthogonal basis of𝑊.

Proof. We first show that 􏾊𝑥 − Proj𝑊(𝑥), 𝑤􏽽 = 0, for all 𝑤 ∈ 𝑊. Note that

􏾊𝑥 − Proj𝑊(𝑥), 𝑤𝑖􏽽 = ⟨𝑥, 𝑤𝑖⟩ − ⟨𝑥, 𝑤𝑖⟩ = 0,

for all 1 ≤ 𝑖 ≤ 𝑛. It remains to show Proj𝑊(𝑥) is unique. Let 𝑦 ∈ 𝑊 such that 𝑥 − 𝑦 ∈ 𝑊⟂, then

􏿏Proj𝑊(𝑥) − 𝑦􏿏
2
= 􏾊Proj𝑊(𝑥) − 𝑦,Proj𝑊(𝑥) − 𝑦􏽽

= 􏾊Proj𝑊(𝑥) − 𝑥 + 𝑥 − 𝑦,Proj𝑊(𝑥) − 𝑦􏽽

= 􏾊Proj𝑊(𝑥) − 𝑥,Proj𝑊(𝑥) − 𝑦􏽽 + 􏾊𝑥 − 𝑦,Proj𝑊(𝑥) − 𝑦􏽽

= 0 + 0 = 0 .

We now generalize the idea of orthogonal projection to the case when the subspace 𝑊
is not given.

Definition 24 (Projection). Let 𝑉 be an inner product space over 𝐹, and let 𝑇 ∶ 𝑉 → 𝑉 be a
linear transformation.

1. We say 𝑇 is a projection if 𝑇2 = 𝑇.

2. We say 𝑇 is an orthogonal projection if 𝑇2 = 𝑇 and (Im𝑇)⟂ = ker𝑇.

Remark. Let 𝑇 ∶ 𝑉 → 𝑉 be an orthogonal projection defined as above. Then, 𝑇(𝑣) = Proj𝑊(𝑣),
where𝑊 ∶= Im𝑇.

2.3 Hilbert space
In the previous text, lots of properties of inner product spaces only hold when the space

is finite dimensional. This subsection we shall introduce a kind of inner product space that
act like a finite dimensional inner product space.

Definition 25 (Hilbert space). Let (𝑉, ⟨ , ⟩) be an inner product space. The norm ‖⋅‖ induces
a metric 𝑑 on 𝑉. 𝑉 is said to be a Hilbert space, if (𝑉, 𝑑) is a complete metric space in the
sense that every Cauchy sequence converges. A subspace𝑊 ⊂ 𝑉 is closed if𝑊 is a Hilbert
subspace.

Remark. In analysis, “closedness” of a subspace 𝑊 means that every convergent sequence
in𝑊 converges to a point in𝑊. This definition coincides the above definition.
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Theorem 26 (Existence of orthogonal projection). Let (𝑉, ⟨ , ⟩) be a Hilbert space and let𝑊 ⊂ 𝑉
be a closed subset. Then, Proj𝑊(𝑥) exists uniquely.

Proof. Let 𝑑 ∶= inf𝑤∈𝑊 ‖𝑤 − 𝑥‖. We claim that there exist a vector 𝑦0 ∈ 𝑊 such that 􏿎𝑦0 − 𝑥􏿎 = 𝑑.
By the definition of infimum, there exist 𝑦𝑛 such that

𝑑 ≤ 􏿎𝑦𝑛 − 𝑥􏿎 < 𝑑 +
1
𝑛.

We first show that 􏿴𝑦𝑛􏿷 is a Cauchy sequence. Given 𝜖 > 0. Let 𝑁 ∈ ℕ large enough so that

8𝑑
𝑁 + 4

𝑁2 < 𝜖.

By the parallelogram law, we have

􏿎𝑦𝑛 − 𝑦𝑚􏿎
2
= 2(􏿎𝑦𝑛 − 𝑥􏿎

2
+ 􏿎𝑦𝑚 − 𝑥􏿎

2
) − 􏿎𝑦𝑛 + 𝑦𝑚 − 2𝑥􏿎

2

< 2
⎛
⎜⎜⎜⎜⎝􏿶𝑑 +

1
𝑛􏿹

2

+ 􏿶𝑑 +
1
𝑚􏿹

⎞
⎟⎟⎟⎟⎠ − 4 􏿐

𝑦𝑛 + 𝑦𝑚
2 − 𝑥􏿐

2

< 4 􏿶𝑑 +
1
𝑁􏿹

2

− 4𝑑2 = 8𝑑
𝑁 + 4

𝑁2 < 𝜖,

where 𝑛,𝑚 ≥ 𝑁. Hence, 􏿴𝑦𝑛􏿷 is a Cauchy sequence. Suppose 𝑦𝑛 → 𝑦0, then 􏿎𝑦0 − 𝑥􏿎 = 𝑑. We
now show that 𝑝 = 𝑥 − 𝑦0 ∈ 𝑊⟂. Let us introduce two parameters 𝑡 ∈ 𝐹 and 𝑤 ∈ 𝑊, then we
have

􏿎𝑝 − 𝑡 ⋅ 𝑤􏿎
2
= 􏿎𝑥 − 𝑦0 − 𝑡 ⋅ 𝑤􏿎

2
≥ 𝑑2

⟹ 􏿎𝑝􏿎
2
+ 𝑡2 ⋅ ‖𝑤‖2 − 2ℜ􏿴𝑡 ⋅ 􏾉𝑝, 𝑤􏽼􏿷 ≥ 𝑑2

⟹ 𝑡2 ⋅ ‖𝑤‖2 − 2ℜ􏿴𝑡 ⋅ 􏾉𝑝, 𝑤􏽼􏿷 ≥ 0.

(3)

If 􏾉𝑝, 𝑤􏽼 ≠ 0, then 􏾉𝑝, 𝑤􏽼 = 𝑟 ⋅ exp (𝑖𝜃) for some 𝑟 > 0. We plug in 𝑡 = 𝜖 ⋅ exp (𝑖𝜃) to (3), for
small enough 𝜖 > 0. Then,

𝜖2 ‖𝑤‖2 ≥ 2 ⋅ ℜ(𝜖𝑟),

which fail to be true when 𝜖 is small enough. Therefore, 𝑦0 = lim 𝑦𝑛 = Proj𝑊(𝑥).

Next, we introduce the concept of bounded linear functional.

Definition 27 (Bounded linear functional). Let (𝑉, ⟨ , ⟩) be a Hilbert space over 𝐹. A linear
functional ℓ ∶ 𝑉 → 𝐹 is said to be bounded if there exists𝑀 > 0 such that

|ℓ(𝑣)| ≤ 𝑀 ⋅ ‖𝑣‖ ,

for all 𝑣 ∈ 𝑉. The set of all bounded linear functional on 𝑉 is denoted by 𝑉∨
bdd. In fact, we

can similarly define the concept of bounded linear transformation.

Remark.

1. Any bounded linear functional is a continuous function, with respect to the norm of 𝑉
and metric on 𝐹.

16



2. Any finite dimensional inner product space 𝑉 is a Hilbert space, moreover, 𝑉∨
bdd = 𝑉∨.

Theorem 28 (Riesz representation theorem). Let (𝑉, ⟨ , ⟩) be a Hilbert space, and let ℓ ∈ 𝑉∨
bdd

be a bounded linear functional, then there exist 𝑦 ∈ 𝑉, such that

ℓ(𝑥) = 􏾉𝑥, 𝑦􏽼 ,

for all 𝑥 ∈ 𝑉.

Proof. Let ℓ be a bounded linear functional. Then,𝑁 = ker ℓ is a closed subspace of𝑉. (Recall
that the preimage under a continuous function of a closed set is closed.) If𝑁 is𝑉, then ℓ = 0,
and we can take 𝑦 = 0. Now, we assume that 𝑁 ⊊ 𝑉, it follows from Theorem 26 that there
exists 𝑣 ∈ 𝑁⟂. (Hence ℓ(𝑣) ≠ 0.) Consider a function 𝛼(𝑥) = ℓ(𝑥)/ℓ(𝑣), for all 𝑥 ∈ 𝑉. Then,

ℓ(𝑥) = 𝛼(𝑥) ⋅ ℓ(𝑣)
⟹ ℓ(𝑥 − 𝛼 ⋅ 𝑣) = 0
⟹ 𝑥 − 𝛼 ⋅ 𝑣 ∈ 𝑁
⟹ ⟨𝑥 − 𝛼 ⋅ 𝑣, 𝑣⟩ = 0
⟹ ⟨𝑥, 𝑣⟩ = 𝛼 ⋅ ⟨𝑣, 𝑣⟩

⟹ ℓ(𝑥) = 􏾉𝑥, 𝑦􏽼 , where 𝑦 = ℓ(𝑣)
‖𝑣‖2

⋅ 𝑣.

2.4 Adjoint linear transformation
Definition 29 (Adjoint linear transformation). Let (𝑉, ⟨ , ⟩) and (𝑊, ⟨ , ⟩) be two inner prod-
uct spaces over 𝐹 and let 𝑇 ∶ 𝑉 → 𝑊 be a linear transformation. We define the adjoint of 𝑇 is
the transformation 𝑇∗ ∶ 𝑊 → 𝑉 such that:

⟨𝑇∗(𝑤), 𝑣⟩ = ⟨𝑤, 𝑇(𝑣)⟩ ,

for all 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊.

We now show that 𝑇∗ exists uniquely if both 𝑉 and𝑊 are finite dimensional.

Theorem 30. Let 𝑉 and𝑊 be two finite dimensional inner product spaces and let 𝑇 ∶ 𝑉 → 𝑊 be a
linear transformation. Then, 𝑇∗ exists uniquely.

Proof. By Theorem 22, there exist orthonormal bases of 𝑉 and 𝑊, say 𝒜 = {𝑣1, … , 𝑣𝑛} and
ℬ = {𝑤1, … , 𝑤𝑚}, respectively. Let [𝑇]𝒜,ℬ = 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛. We now assume 𝑇∗ exists, and let
[𝑇∗]ℬ,𝒜 = (𝑏𝑖𝑗)𝑛×𝑚. Then,

􏾊𝑇∗(𝑤𝑖), 𝑣𝑗􏽽 = 􏾊𝑤𝑖, 𝑇(𝑣𝑗)􏽽

⟹ 􏾋
𝑛
􏾜
𝑘=1

𝑏𝑘𝑖 ⋅ 𝑣𝑘, 𝑣𝑗􏽾 = 􏾋𝑤𝑖,
𝑚
􏾜
𝑙=1
𝑎𝑙𝑗 ⋅ 𝑤𝑙􏽾

⟹ 𝑏𝑗𝑖 = 𝑎𝑖𝑗.
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This shows the uniqueness of 𝑇∗. In fact, this also shows the existence of 𝑇∗, since we can
define:

𝑇∗ ∶ 𝑊 → 𝑉
[𝑤]ℬ ↦ 𝐴∗ ⋅ [𝑤]ℬ,

where [𝑤]ℬ denote the coordinate vector of 𝑤 with respect to the basis ℬ. The calculations
above implies 𝑇∗ meets the condition of adjoint linear transformation.

However, the adjoint of an operator is not always exist, especially in infinite dimensional
inner product space. The next theorem asserts that some operators on Hilbert space has an
adjoint. We shall first introduce the concept of bounded linear transformation.

Definition 31 (Bounded linear transformation). Let 𝑇 ∶ 𝑉 → 𝑊 be a linear transformation
between two normed space. Then 𝑇 is said to be bounded if there exists𝑀 > 0 such that

‖𝑇(𝑣)‖𝑊 ≤ 𝑀 ⋅ ‖𝑣‖𝑉 , for all 𝑣 ∈ 𝑉.

Theorem 32 (existence of adjoint operators on Hilbert space). Let 𝑉 be a Hilbert space. (Recall
Definition 25.) Let 𝑇 ∶ 𝑉 → 𝑉 be a bounded linear operator. Then, 𝑇∗, the adjoint of 𝑇, exists.

Proof. This is a corollary of the “Riesz representation theorem”. For each 𝑥 ∈ 𝑉, consider
linear functionals:

ℓ𝑇,𝑥(𝑦) = 􏾉𝑇(𝑦), 𝑥􏽼 , 𝑦 ∈ 𝑉.

It is easy to check that ℓ𝑇,𝑥 is linear. We claim that if 𝑇 is bounded then ℓ𝑇,𝑥 is bounded. Note
that

|ℓ𝑇,𝑥(𝑦)| = |􏾉𝑇(𝑦), 𝑥􏽼| ≤ 􏿎𝑇(𝑦)􏿎 ‖𝑥‖ ≤ 𝑀􏿎𝑦􏿎 ‖𝑥‖ .

Thus, ℓ𝑇,𝑥 is bounded. It follows from Theorem 28 that there exists a unique 𝑧 ∈ 𝑉 such that

ℓ𝑇,𝑥(𝑦) = 􏾉𝑦, 𝑧􏽼 = 􏾉𝑇(𝑦), 𝑥􏽼 , for all 𝑦 ∈ 𝑉

We define 𝑇∗(𝑥) ∶= 𝑧. It is easy to verify that 𝑇∗ is a linear transformation.

Theorem 33. Let𝑉,𝑊 be inner product spaces over 𝐹, and let 𝑇1, 𝑇2 and 𝑇 be linear transformations
from 𝑉 to𝑊. Suppose 𝑇∗1, 𝑇∗2 and 𝑇∗ exist. Then, the following properties hold:

1. (𝑇1 + 𝑇2)∗ = 𝑇∗1 + 𝑇∗2.

2. (𝛼 ⋅ 𝑇)∗ = 𝛼 ⋅ 𝑇∗, for 𝛼 ∈ 𝐹.

3. Let𝑈 be an inner product space and let 𝑆 ∶ 𝑊 → 𝑈 be a linear transformation with the adjoint
exists. Then, (𝑆 ∘ 𝑇)∗ = 𝑇∗ ∘ 𝑆∗.

4. 𝑇∗∗ = 𝑇.

The proof is very straightforward, so we omit it.

Theorem 34. Let 𝑇 ∶ 𝑉 → 𝑊 be a linear transformation between two “finite dimensional” inner
product spaces. Then,

18



1. (Im𝑇)⟂ = ker (𝑇∗).

2. (ker𝑇)⟂ = Im(𝑇∗).

Proof. To show the first assertion, suppose 𝑤 ∈ (Im𝑇)⟂, namely,

⟨𝑤, 𝑇(𝑣)⟩ = 0, for all 𝑣 ∈ 𝑉.
⟺ ⟨𝑇∗(𝑤), 𝑣⟩ = 0, for all 𝑣 ∈ 𝑉.
⟺ 𝑇∗(𝑤) = 0.
⟺ 𝑤 ∈ ker (𝑇∗).

Similarly, for the second assertion. we assume that 𝑣 ∈ Im(𝑇∗), then 𝑣 = 𝑇∗(𝑤) for some
𝑤 ∈ 𝑊. Note that

⟨𝑣, 𝑥⟩ = ⟨𝑇∗(𝑤), 𝑥⟩ = ⟨𝑤, 𝑇(𝑥)⟩ = 0, for all 𝑥 ∈ ker𝑇.

Thus, we conclude that Im(𝑇∗) ⊂ (ker𝑇)⟂. By the dimensional formulas, we get Im(𝑇∗) =
(ker𝑇)⟂.

Definition 35 (Unitary linear transformation (operator)). Let 𝑇 ∶ 𝑉 → 𝑊 be a linear trans-
formation between two inner product spaces (probably infinite dimensional). 𝑇 is called
unitary if

⟨𝑇(𝑣1), 𝑇(𝑣2)⟩ = ⟨𝑣1, 𝑣2⟩ ,

for all 𝑣1, 𝑣2 ∈ 𝑉.

The next theorem gives a characterization of unitary operators.

Theorem 36. Given a linear transformation 𝑇 ∶ 𝑉 → 𝑊 between two finite dimensional inner
product spaces. Then the following statements are equivalent:

1. 𝑇 is unitary.

2. ‖𝑇(𝑣)‖ = ‖𝑣‖, for all 𝑣 ∈ 𝑉.

3. 𝑇∗ ∘ 𝑇 = Id𝑉 .

4. 𝑇 sends the orthonormal basis to an orthonormal set.

Proof.
(1)⟹ (2): Obvious.
(2)⟹ (1): Consider 􏿎𝑇(𝑥 + 𝑦)􏿎

2
= 􏿎𝑥 + 𝑦􏿎

2
.

􏾉𝑇(𝑥), 𝑇(𝑦)􏽼 + 􏾉𝑇(𝑦), 𝑇(𝑥)􏽼 = 􏾉𝑥, 𝑦􏽼 + 􏾉𝑦, 𝑥􏽼
⟹ ℜ􏿴􏾉𝑇(𝑥), 𝑇(𝑦)􏽼􏿷 = ℜ􏿴􏾉𝑥, 𝑦􏽼􏿷.

(4)

If 𝐹 = ℝ, then (4) shows that 􏾉𝑇(𝑥), 𝑇(𝑦)􏽼 = 􏾉𝑥, 𝑦􏽼. If 𝐹 = ℂ, then plugging in 𝑦 ↦ 𝑖 ⋅ 𝑦 to
equation (4) gives

ℜ􏿴(−𝑖) ⋅ 􏾉𝑇(𝑥), 𝑇(𝑦)􏽼􏿷 = ℜ􏿴(−𝑖) ⋅ 􏾉𝑥, 𝑦􏽼􏿷.
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Together with equation 4 indicate that 𝑇 is unitary.
(3)⟺ (1): 𝑇 is unitary if and only if

􏾉𝑇(𝑥), 𝑇(𝑦)􏽼 = 􏾉𝑥, 𝑦􏽼 , for all 𝑥, 𝑦 ∈ 𝑉
⟺ 􏾉𝑇∗𝑇(𝑥), 𝑦􏽼 = 􏾉𝑥, 𝑦􏽼 , for all 𝑥, 𝑦 ∈ 𝑉
⟺ 􏾉(𝑇∗𝑇 − Id𝑉)(𝑥), 𝑦􏽼 = 0, for all 𝑥, 𝑦 ∈ 𝑉
⟺ (𝑇∗𝑇 − Id𝑉) ≡ 0.

(1)⟺ (4): Let𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} be an orthonormal basis of 𝑉. Then,

􏾊𝑇(𝑣𝑖), 𝑇(𝑣𝑗)􏽽 = 􏾊𝑣𝑖, 𝑣𝑗􏽽 =

⎧⎪⎪⎨
⎪⎪⎩
1, if 𝑖 ≠ 𝑗
0, if 𝑖 = 𝑗

.

Thus, 𝑇(𝒜) = {𝑇(𝑣1), 𝑇(𝑣2), … , 𝑇(𝑣𝑛)} is an orthonormal set.
(4) ⟺ (1): Let 𝑥, 𝑦 ∈ 𝑉 be two arbitrary vector in 𝑉. Let 𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} be an

orthonormal basis of 𝑉. Assume

𝑥 =
𝑛
􏾜
𝑖=1
𝛼𝑖 ⋅ 𝑣𝑖, 𝑦 =

𝑛
􏾜
𝑖=1
𝛽𝑖 ⋅ 𝑣𝑖.

Then,

􏾉𝑇(𝑥), 𝑇(𝑦)􏽼 = 􏾋𝑇(
𝑛
􏾜
𝑖=1
𝛼𝑖 ⋅ 𝑣𝑖), 𝑇(

𝑛
􏾜
𝑖=1
𝛽𝑖 ⋅ 𝑣𝑖)􏽾 =

𝑛
􏾜
𝑖=1
𝛼𝑖 ⋅ 𝛽𝑖 = 􏾉𝑥, 𝑦􏽼 .

2.5 Spectral theory of normal operators
Definition 37 (Self-adjoint and normal operator). Let 𝑇 ∶ 𝑉 → 𝑉 be a linear operator on an
inner product space 𝑉.

1. We say 𝑇 is self-adjoint, if 𝑇 = 𝑇∗.

2. We say 𝑇 is normal, if 𝑇 ∘ 𝑇∗ = 𝑇∗ ∘ 𝑇.

Remark. A linear operator 𝑇 ∶ 𝑉 → 𝑉 is unitary if and only if 𝑇∗ = 𝑇−1. (Assume that 𝑉 is
finite dimensional.) Thus, unitary operators and self-adjoint operators are normal.

In the rest of this subsection, if not specifically mentioned, 𝑉 denotes the finite dimen-
sional inner product space over 𝐹 (ℝ or ℂ.)

Theorem 38. Given 𝑇 ∶ 𝑉 → 𝑉, a linear operator on finite dimensional space 𝑉. The the following
statements are equivalent.

1. 𝑇 is normal.

2. ‖𝑇(𝑣)‖ = ‖𝑇∗(𝑣)‖, for all 𝑣 ∈ 𝑉.
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Proof.
(1)⟹ (2): Note that

⟨𝑇(𝑣), 𝑇(𝑣)⟩ = ⟨𝑇∗𝑇(𝑣), 𝑣⟩ = ⟨𝑇𝑇∗(𝑣), 𝑣⟩ = ⟨𝑇∗(𝑣), 𝑇∗(𝑣)⟩ .

(2)⟹ (1): Consider 􏿎𝑇(𝑥 + 𝑦)􏿎
2
= 􏿎𝑇∗(𝑥 + 𝑦)􏿎

2
(and 􏿎𝑇(𝑥 + 𝑖 ⋅ 𝑦)􏿎

2
= 􏿎𝑇∗(𝑥 + 𝑖 ⋅ 𝑦)􏿎

2
if 𝐹 = ℂ.)

Expanding both equations gives

􏾉𝑇∗𝑇(𝑥), 𝑦􏽼 = 􏾉𝑇𝑇∗(𝑥), 𝑦􏽼 , for all 𝑥, 𝑦 ∈ 𝑉.

Thus, 𝑇 ∘ 𝑇∗ ≡ 𝑇∗ ∘ 𝑇.

Corollary. Let 𝑇 ∶ 𝑉 → 𝑉 be a linear operator on a finite dimensional vector space 𝑉. Sup-
pose 𝑇 is normal, and 𝑣 is an eigenvector of 𝑇 with eigenvalue 𝜆. Then, 𝑣 is an eigenvector of
𝑇∗ with eigenvalue 𝜆.

Proof. Since 𝑇 is normal, 𝑆 = 𝑇 −𝜆 ⋅ Id𝑉 is normal. (In fact, 𝑝(𝑇) is normal, for all 𝑝(𝑥) ∈ 𝐹[𝑥].)
We have 𝑆𝑣 = 0. From Theorem 38, we have ‖𝑆∗𝑣‖ = ‖𝑆𝑣‖ = 0. Hence, 𝑣 is in the kernel of
𝑆∗ = 𝑇∗ − 𝜆 ⋅ Id𝑉 . This completes the proof.

We now prove an useful lemma.

Lemma 3. Let 𝑇 be a linear operator on 𝑉, such that 𝑇∗ exists. (We have assumed nothing
about whether it is normal.) Then,

ker𝑇∗𝑇 = ker𝑇.

Proof. Obviously, ker𝑇 ⊂ ker𝑇∗𝑇. It suffices to show that ker𝑇∗𝑇 ⊂ ker𝑇. Let 𝑣 ∈ ker𝑇∗𝑇,
then,

𝑇∗𝑇(𝑣) = 0 ⟹ ⟨𝑇∗𝑇(𝑣), 𝑣⟩ = 0
⟹ ⟨𝑇(𝑣), 𝑇(𝑣)⟩ = 0
⟹ ‖𝑇(𝑣)‖ = 0
⟹ 𝑇(𝑣) = 0.

Theorem 39 (Semi-simplicity of normal operators). Suppose 𝑇 is a normal operator on 𝑉. If
𝑇𝑛 ≡ 0, for some 𝑛 ≥ 1. Then 𝑇 ≡ 0.

Proof. Let 𝑆 = 𝑇∗𝑇. By Lemma 3, it suffices to show ker 𝑆 = 𝑉. Since 𝑇𝑛 = 0, we have 𝑆𝑛 = 0.
(𝑇∗ and 𝑇 commute.) We may enlarge 𝑛 so that 𝑛 = 2𝑘 for some 𝑘 ∈ ℕ. Note that

􏿏𝑆2𝑘−1𝑣􏿏
2
= 􏾊𝑆2𝑘−1𝑣, 𝑆2𝑘−1𝑣􏽽 = 􏾊􏿴𝑆2𝑘−1􏿷

∗
𝑆2𝑘−1𝑣, 𝑣􏽽 = 􏾊𝑆2𝑘𝑣, 𝑣􏽽 = 0.

Repeating this process gives us 𝑆 = 0.

Before we introduce the next theorem (Theorem 40), we shall first prove another useful
result.
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Lemma 4. Let 𝑉 be an inner product space over 𝐹, and let 𝑇 ∶ 𝑉 → 𝑉 be a normal operator
on 𝑉. Suppose 𝑝(𝑥) and 𝑞(𝑥) are polynomials in 𝐹 with no common roots. Then,

ker (𝑝(𝑇)) ⟂ ker (𝑞(𝑇)),

that is, ⟨𝑣, 𝑤⟩ = 0, for all 𝑣 ∈ ker (𝑝(𝑇)) and 𝑤 ∈ ker (𝑞(𝑇)).

Proof. Since 𝑝, 𝑞 have no common roots, there exist 𝐴,𝐵 ∈ 𝐹[𝑥], such that

𝐴(𝑥)𝑝(𝑥) + 𝐵(𝑥)𝑞(𝑥) = 1.

Let 𝑣 ∈ ker (𝑝(𝑇)) and 𝑤 ∈ ker (𝑞(𝑇)). We have 𝐵(𝑇)𝑞(𝑇)(𝑣) = 𝑣. Thus,

⟨𝑣, 𝑤⟩ = 􏾉𝐵(𝑇)𝑞(𝑇)(𝑣), 𝑤􏽼 = 􏾉𝑞(𝑇)𝐵(𝑇)𝑣, 𝑤􏽼 = 􏾉𝐵(𝑇)𝑣, 𝑞(𝑇)∗(𝑤)􏽼 (♠)= ⟨𝐵(𝑇)𝑣, 0⟩ = 0.

(♠) is true since:

𝑤 ∈ ker (𝑞(𝑇)) ⟹ 􏿎𝑞(𝑇)(𝑤)􏿎 = 0
⟹ 􏿎𝑞(𝑇)∗(𝑤)􏿎 = 0
⟹ 𝑞(𝑇)∗(𝑤) = 0.

Theorem 40. Let (𝑉, ⟨ , ⟩) be an finite dimensional inner product space over ℂ. Let 𝑇 ∶ 𝑉 → 𝑉 be a
normal operator on 𝑉. Then, 𝑇 is diagonalizable. Moreover,

𝑉 =
𝑠

􏾘
𝑖=1

𝐸𝜆𝑖 = 𝐸𝜆1 ⊕ 𝐸𝜆2 ⊕⋯⊕ 𝐸𝜆𝑠

is the orthogonal decomposition of eigenspaces of 𝑉. Recall that 𝐸𝜆𝑖 is the eigenspace that which has
eigenvalue 𝜆.

Here we give two proofs.

Proof. Let ch𝑇(𝑥) be the characteristic polynomial of 𝑇. The fundamental theorem of algebra
asserts that ch𝑇(𝑥) splits completely, that is,

ch𝑇(𝑥) =
𝑠
􏾟
𝑖=1
(𝑥 − 𝜆𝑖)𝑛𝑖 .

Then, we have learnt that 𝑉 =⨁𝑠
𝑖=1𝑊𝑖 in the theory of Jordan forms, where

𝑊𝑖 = ker (𝑇 − 𝜆𝑖 ⋅ Id𝑉)𝑛𝑖 .

Consider 𝑇|𝑊𝑖
on (𝑊𝑖, ⟨ , ⟩|𝑊𝑖×𝑊𝑖

). Note that 𝑇|𝑊𝑖
is normal and that (𝑇|𝑊𝑖

−𝜆𝑖 ⋅ Id𝑊𝑖)
𝑛𝑖 = 0. By

Theorem 39, we conclude 𝑇|𝑊𝑖
− 𝜆𝑖 ⋅ Id𝑊𝑖 = 0. This implies

𝑊𝑖 = ker (𝑇 − 𝜆𝑖 ⋅ Id𝑉)𝑛𝑖 = ker (𝑇 − 𝜆𝑖 ⋅ Id𝑉) = 𝐸𝜆𝑖 .

It remains to show that each 𝐸𝜆𝑖 is orthogonal to each other. It follows by Lemma 4.

Here is an alternative proof using mathematical induction.
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Proof. Let 𝜆 ∈ ℂ be an eigenvalue of 𝑇. Then,

𝐸𝜆 = {𝑣 ∈ 𝑉 ∶ 𝑇(𝑣) = 𝜆 ⋅ 𝑣} ≠ {0}.

Decompose 𝑉 into 𝐸𝜆 ⊕ 𝐸⟂𝜆 . (𝑉 is finite dimensional.) We claim that 𝐸⟂𝜆 is a 𝑇-invariant
subspace. Let 𝑥 ∈ 𝐸⟂𝜆 and 𝑣 ∈ 𝐸𝜆. Then,

⟨𝑇(𝑥), 𝑣⟩ = ⟨𝑥, 𝑇∗(𝑣)⟩ (♠)= 􏾊𝑥, 𝜆𝑣􏽽 = 𝜆 ⟨𝑥, 𝑣⟩ = 0.

The equality (♠) holds because of Corollary 2.5. On the other hand,

dim𝐸⟂𝜆 < dim𝑉.

By induction, 𝑇|𝐸⟂𝜆 is diagonalizable and

𝐸⟂𝜆 =􏾘
𝑖
𝐸𝜆𝑖 .

This completes the proof.

However, Theorem 40 is not true for inner product space over ℝ. But we have the fol-
lowing theorem.

Theorem 41. Let 𝑉 be a finite dimensional inner product space over ℝ, and let 𝑇 ∶ 𝑉 → 𝑉 be a
self-adjoint operator on 𝑉. Then, 𝑇 is diagonalizable. Moreover,

𝑉 =
𝑠

􏾘
𝑖=1

𝐸𝜆𝑖 ,

and 𝐸𝜆𝑖 ⟂ 𝐸𝜆𝑗 if 𝑖 ≠ 𝑗.

Proof. In view of the proofs of Theorem 40, it suffices to show that ch𝑇(𝑥) splits completely
in ℝ. Choose an orthonormal basis𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} of 𝑉. Define a matrix

𝐴 ∶= [𝑇]𝒜 = (𝑎𝑖𝑗)𝑛×𝑛.

Then, it is well-known that

[𝑇∗]𝒜 = 𝐴∗.

Hence 𝐴∗ = 𝐴 since 𝑇 is self-adjoint. Now, assume 𝜆 ∈ ℂ is an eigenvalue of 𝑇. Then, there
exists 𝑥 ∈ ℂ𝑛 ⧵ {0} (column vector) such that

𝐴𝑥 = 𝜆 ⋅ 𝑥.

Consider

𝜆(𝑥∗ ⋅ 𝑥) = (𝐴𝑥)∗ ⋅ 𝑥 = 𝑥∗ ⋅ 𝐴∗ ⋅ 𝑥 = 𝑥∗ ⋅ 𝐴 ⋅ 𝑥 = 𝜆 ⋅ (𝑥∗ ⋅ 𝑥).

This indicates

𝜆 ⋅ ‖𝑥‖2 = 𝜆 ⋅ ‖𝑥‖2 ⟹ 𝜆 ∈ ℝ.
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Corollary. Let 𝐴 ∈ 𝑀𝑛(ℂ) be a complex normal matrix, that is,

𝐴∗ ⋅ 𝐴 = 𝐴 ⋅ 𝐴∗.

Then, there exists an invertible matrix 𝑃 ∈ 𝑀𝑛(ℂ) such that:

1. 𝑃 ⋅ 𝑃∗ = 𝐼𝑛.

2. 𝑃−1𝐴𝑃 is diagonal.

Proof. Let 𝑉 = ℂ𝑛 be an inner product space equipped with the standard inner product
structure. Let 𝑇 ∶ 𝑉 → 𝑉 be the operator defined by

𝑣 ↦ 𝐴 ⋅ 𝑣.

Then, the standard basis is orthonormal and hence 𝐴∗ = 𝐴 is equivalent to 𝑇 is self-adjoint.
It follows from Theorem 40 that

𝑉 =
𝑠

􏾘
𝑖=1

𝐸𝜆𝑖

is a orthogonal decomposition. For each 𝐸𝜆𝑖 , we choose an orthonormal basis

𝒜𝑖 = 􏿺𝑣𝑖1, … , 𝑣𝑖𝑛𝑖􏿽 .

Then,

𝒜 =
𝑠
􏾅
𝑖=1

𝒜𝑖 = 𝒜1 ⊔𝒜2 ⊔⋯⊔𝒜𝑠

is an orthonormal basis. (Because 𝐸𝜆𝑖 ⟂ 𝐸𝜆𝑗 .) Let 𝑃 be the matrix sends the standard basis
to𝒜. By Theorem 36, we conclude that 𝑃 ⋅ 𝑃∗ = 𝑃∗ ⋅ 𝑃 = 𝐼𝑛. Also, it is easy to see

𝑃−1𝐴𝑃 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆1𝐼𝑛1 0 ⋯ 0
0 𝜆2𝐼𝑛2 ⋯ ⋮
⋮ ⋮ ⋱ 0
0 ⋯ 0 𝜆𝑠𝐼𝑛𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This completes the proof.

Similarly, one can prove the following result:

Corollary. Let 𝐴 ∈ 𝑀𝑛(ℝ) be a real matrix such that 𝐴t = 𝐴. Then, there exists an invertible
matrix 𝑃 ∈ 𝑀𝑛(ℝ) such that:

1. 𝑃t ⋅ 𝑃 = 𝑃 ⋅ 𝑃t = 𝐼𝑛.

2. 𝑃−1𝐴𝑃 is diagonal.

Corollary. Let 𝑇 be a self-adjoint operator on inner product space 𝑉 over 𝐹. Then, there
exists 𝜆𝑖 ∈ ℝ such that

𝑇(𝑣) = 𝜆1 ⋅ Proj𝐸𝜆1
(𝑣) + 𝜆2 ⋅ Proj𝐸𝜆2

(𝑣) +⋯ + 𝜆𝑠 ⋅ Proj𝐸𝜆𝑠
(𝑣).
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In Theorem 41, we show that every self-adjoint operator on vector space over ℝ is di-
agonalizable. However, we do not deal with all normal operators. The next theorem is dis-
cussing operators over real inner product space.

Theorem 42. Let 𝐴 ∈ 𝑀𝑛(ℝ) be a real normal matrix, that is,

𝐴t ⋅ 𝐴 = 𝐴 ⋅ 𝐴t.

Then, there exists an invertible matrix 𝑃 ∈ 𝑀𝑛(ℝ) such that:

1. 𝑃 ⋅ 𝑃t = 𝑃t ⋅ 𝑃 = 𝐼𝑛.

2. 𝑃−1𝐴𝑃 = (⨁𝑠
𝑖=1 𝜆𝑖𝐼𝑛𝑖) ⊕ (⨁

𝑟
𝑗=1𝐷

⊕𝑚𝑗
𝑗 ), where all 𝜆𝑖 ∈ ℝ, and all 𝐷𝑗 have the form:

⎛
⎜⎜⎜⎝
𝛼𝑗 𝛽𝑗
−𝛽𝑗 𝛼𝑗

⎞
⎟⎟⎟⎠ .

Remark. Here, we have a little abuse of notation. We write 𝐴 ⊕ 𝐵 to represent
⎛
⎜⎜⎜⎝
𝐴 0
0 𝐵

⎞
⎟⎟⎟⎠ ,

if both 𝐴 and 𝐵 are square matrices. Also, we write 𝑃⊕𝑘 to mean⨁𝑘
𝑖=1 𝑃 = 𝑃 ⊕ 𝑃 ⊕⋯⊕𝑃, for

square matrix 𝑃.

Before we start proving this theorem, we shall first prove some useful lemmas.

Lemma 5. Let 𝑉 be an inner product space over ℝ, and let 𝑇 ∶ 𝑉 → 𝑉 be a normal operator,
such that

𝑆2 = −Id𝑉 .

Let 𝑣1 ∈ 𝑉 ⧵ {0} and 𝑣2 = 𝑆(𝑣1). Then,

𝑆∗(𝑣1) = −𝑣2, 𝑆∗(𝑣2) = 𝑣1, ⟨𝑣1, 𝑣2⟩ = 0, ‖𝑣1‖ = ‖𝑣2‖ .

Proof. Consider

‖𝑆∗𝑣1 + 𝑣2‖
2 + ‖𝑆∗𝑣2 − 𝑣1‖

2

= ⟨𝑆∗𝑣1, 𝑆∗𝑣1⟩ + ⟨𝑆∗𝑣1, 𝑣2⟩ + ⟨𝑣2, 𝑆∗𝑣1⟩ + ⟨𝑣2, 𝑣2⟩
+ ⟨𝑆∗𝑣2, 𝑆∗𝑣2⟩ − ⟨𝑆∗𝑣2, 𝑣1⟩ − ⟨𝑣1, 𝑆∗𝑣2⟩ + ⟨𝑣1, 𝑣1⟩

= ⟨𝑆𝑣1, 𝑆𝑣1⟩ + 2 ⋅ ⟨𝑆𝑣2, 𝑣1⟩ + ⟨𝑣2, 𝑣2⟩ + ⟨𝑆𝑣2, 𝑆𝑣2⟩ − 2 ⋅ ⟨𝑆𝑣1, 𝑣2⟩ + ⟨𝑣1, 𝑣1⟩

= ‖𝑆𝑣1 − 𝑣2‖
2 + ‖𝑆𝑣2 + 𝑣1‖

2 = 0.

This prove the first two assertion. Note that

⟨𝑣1, 𝑣2⟩ = ⟨𝑣1, 𝑆𝑣1⟩ = ⟨𝑆∗𝑣1, 𝑣1⟩ = ⟨−𝑣2, 𝑣1⟩ = − ⟨𝑣1, 𝑣2⟩

and that

‖𝑣2‖
2 = ⟨𝑣2, 𝑣2⟩ = ⟨𝑆𝑣1, 𝑣2⟩ = ⟨𝑣1, 𝑆∗𝑣2⟩ = ⟨𝑣1, 𝑣1⟩ = ‖𝑣1‖

2 .
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From Lemma 5, we conclude that:

Continuing from the above definition, let

𝑤1 =
𝑣1
‖𝑣1‖

, 𝑤2 =
𝑣2
‖𝑣2‖

.

Then, {𝑤1, 𝑤2} is an orthonormal set. Moreover, 𝑊 ∶= spanℝ{𝑤1, 𝑤2} is 𝑆-
invariant and 𝑆∗-invariant.

􏿮𝑆|𝑊􏿱{𝑤1,𝑤2}
=
⎛
⎜⎜⎜⎝
0 −1
1 0

⎞
⎟⎟⎟⎠ .

Lemma 6. Let 𝑇 ∶ 𝑉 → 𝑉 be a normal operator on a finite dimensional inner product space.
Suppose

ch𝑇(𝑥) = 􏿴(𝑥 − 𝑎)2 + 𝑏2􏿷
𝑚
,

for some 𝑏 ≠ 0. Then, there exists an orthonormal basis𝒜 such that

[𝑇]𝒜 =
⎛
⎜⎜⎜⎝
𝑎 −𝑏
𝑏 𝑎

⎞
⎟⎟⎟⎠
⊕𝑚

.

Proof. Let 𝑆 = (𝑇−𝑎)/𝑏. Then, by Lemma 5, we have an orthonormal set𝒜1 = {𝑤1, 𝑤2}. Define
𝑊1 = spanℝ{𝑤1, 𝑤2}. Then,

􏿮𝑆|𝑊1
􏿱
{𝑤1,𝑤2}

=
⎛
⎜⎜⎜⎝
0 −1
1 0

⎞
⎟⎟⎟⎠ .

That indicates that

􏿮𝑇|𝑊1
􏿱
{𝑤1,𝑤2}

=
⎛
⎜⎜⎜⎝
𝑎 −𝑏
𝑏 𝑎

⎞
⎟⎟⎟⎠ .

We now claim that𝑊⟂
1 is a 𝑆-invariant subspace. Let 𝑣 ∈ 𝑊⟂

1 and 𝑤 ∈ 𝑊1, then

⟨𝑆𝑣, 𝑤⟩ = ⟨𝑣, 𝑆∗𝑤⟩ = 0,

since 𝑊1 is also a 𝑆∗-invariant subspace. Similarly, we have an orthonormal set 𝒜2 ⊂ 𝑊⟂
1

such that

􏿮𝑆|𝑊2
􏿱
𝒜2
=
⎛
⎜⎜⎜⎝
0 −1
1 0

⎞
⎟⎟⎟⎠ ,

where 𝑊2 is the subspace generated by 𝒜2. Also, (𝑊1 ⊕ 𝑊2)⟂ is a 𝑆-invariant. Continuing
this process give s

𝑉 =
𝑠

􏾘
𝑖=1

𝑊𝑖,

each𝑊𝑖 is spanned by an orthonormal set𝒜𝑖 and

􏿮𝑆|𝑊𝑖
􏿱
𝒜𝑖
=
⎛
⎜⎜⎜⎝
0 −1
1 0

⎞
⎟⎟⎟⎠ .
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Let𝒜 = ⨆𝒜𝑖, then

[𝑇]𝒜 =
⎛
⎜⎜⎜⎝
𝑎 −𝑏
𝑏 𝑎

⎞
⎟⎟⎟⎠
⊕𝑚

.

Lemma 7. Let 𝑇 ∶ 𝑉 → 𝑉 be a normal operator on a finite dimensional vector space 𝑉 over
ℝ. Suppose m𝑇(𝑥) = ∏

𝑠
𝑖=1 𝑓𝑖, where 𝑓𝑖 are all irreducible. Then, 𝑓𝑖 are all distinct.

Proof. Suppose not, then there exists an irreducible polynomial 𝑓 ∈ ℝ[𝑥] such that 𝑓 = 𝑓𝑖 for
more than one 𝑖. Let us consider 𝑊 = ker 𝑓𝑛(𝑇), then 𝑊 is a 𝑓(𝑇)-invariant subspace. Note
that 𝑓(𝑇) is normal on𝑊 and 𝑓(𝑇)𝑛 ≡ 0 on𝑊. Thus, from Theorem 39, we conclude that

ker 𝑓(𝑇) = ker 𝑓𝑛(𝑇),

which leads to a contradiction.

Proof of Theorem 42. From Lemma 7, we assume that

m𝑇(𝑥) =

⎛
⎜⎜⎜⎜⎜⎝

𝑠
􏾟
𝑖=1
(𝑥 − 𝜆𝑖)

⎞
⎟⎟⎟⎟⎟⎠ ⋅

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑟
􏾟
𝑗=1

􏿴(𝑥 − 𝑎𝑗)2 + 𝑏2𝑗 􏿷

⎞
⎟⎟⎟⎟⎟⎟⎠ .

From what we have learnt in the theory of Jordan forms,

𝑉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑠
􏾘
𝑖=1

ker (𝑇 − 𝜆𝑖)

⎞
⎟⎟⎟⎟⎟⎟⎠ ⊕

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑟
􏾘
𝑗=1

ker 􏿴(𝑇 − 𝑎𝑗)2 + 𝑏2𝑗 􏿷

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

For simplicity, we define 𝑊𝑖 ∶= ker (𝑇 − 𝜆𝑖) and 𝑋𝑗 ∶= ker 􏿴(𝑇 − 𝑎𝑗)2 + 𝑏2𝑗 􏿷. It suffices to show
that for each 𝑗, there exists a basis𝒜𝑗 such that

􏿯𝑇|𝑋𝑗􏿲𝒜𝑗
= 𝐷⊕𝑚𝑗

𝑗 ,

where

𝐷𝑗 ∶=
⎛
⎜⎜⎜⎝
𝑎𝑗 −𝑏𝑗
𝑏𝑗 𝑎𝑗

⎞
⎟⎟⎟⎠ .

This follows from Lemma 6. □

2.6 Applications of spectral theory of normal operators
This subsection is mainly deal with two topics:

1. Structure of orthogonal (unitary) operators.

2. Singular value decomposition (SVD).

In this subsection, we assume that 𝑉 is a finite dimensional inner product space unless oth-
erwise stated.
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Definition 43 (Unitary groups and orthogonal groups). Let 𝑉 be a finite dimensional inner
product space over 𝐹.

1. If 𝐹 = ℂ, we define the unitary group

U(𝑉) = {𝑇 ∶ 𝑉 → 𝑉 ∣ 𝑇 ⋅ 𝑇∗ = 𝑇∗ ⋅ 𝑇 = Id𝑉} .

2. If 𝐹 = ℝ, we define the orthogonal group

O(𝑉) = {𝑇 ∶ 𝑉 → 𝑉 ∣ 𝑇 ⋅ 𝑇∗ = 𝑇∗ ⋅ 𝑇 = Id𝑉} .

We also define unitary groups and orthogonal groups by matrices. We write:

1. O𝑛(ℝ) = {𝐴 ∈ 𝑀𝑛(ℝ) ∶ 𝐴 ⋅ 𝐴t = 𝐼𝑛} is the orthogonal group.

2. U𝑛(ℝ) = {𝐴 ∈ 𝑀𝑛(ℂ) ∶ 𝐴 ⋅ 𝐴∗ = 𝐼𝑛} is the unitary group.

Note that U𝑛(ℝ) contains some complex matrices although it contains ℝ in its “name”.
We now focus on orthogonal groups.

Definition 44 (Reflection). Let 𝑇 ∶ 𝑉 → 𝑉 be a linear operator. 𝑇 is a reflection if there exists
a 𝑧 ∈ 𝑉 with ‖𝑧‖ = 1 such that

𝑇(𝑥) = 𝑥 − 2 ⋅ Proj𝑧(𝑥) = 𝑥 − 2 ⋅ ⟨𝑥, 𝑧⟩ ⋅ 𝑧, for all 𝑥 ∈ 𝑉.

We also say that 𝑇 is the reflection over the hyperplaneℋ = (ℝ ⋅ 𝑧)⟂.

Remark. Suppose 𝑇 is a reflection. Let𝒜 be an orthonormal basis ofℋ. Then,𝒜′ = {𝑧} ⊔𝒜
is an orthonormal basis such that

[𝑇]𝒜′ =
⎛
⎜⎜⎜⎝
−1 0
0 𝐼𝑛−1

⎞
⎟⎟⎟⎠ .

This means that there exists a matrix 𝑃 ∈ O𝑛(ℝ), such that

𝑃t[𝑇]ℬ𝑃 =
⎛
⎜⎜⎜⎝
−1 0
0 𝐼𝑛−1

⎞
⎟⎟⎟⎠ ,

where ℬ is the standard basis. Hence, we can define reflection on𝑀𝑛(ℝ).

Definition 45. Let 𝐴 ∈ 𝑀𝑛(ℝ) be a real matrix. 𝐴 is a reflection if (and only if) there exist a
𝑃 ∈ O𝑛(ℝ) such that

𝑃t𝐴𝑃 =
⎛
⎜⎜⎜⎝
−1 0
0 𝐼𝑛−1

⎞
⎟⎟⎟⎠ .

Lemma 8.

1. If 𝐴 ∈ O𝑛(ℝ) and 𝜆 ∈ ℝ is an eigenvalue of 𝐴, then 𝜆 = ±1.

2. If 𝐴 ∈ U𝑛(ℝ) and 𝜆 ∈ ℂ is an eigenvalue of 𝐴, then |𝜆| = 1.
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Proof. Let 𝑉 = 𝐹𝑛. (𝐹 is ℝ or ℂ.) Define the standard inner product ⟨⋅, ⋅⟩ on 𝑉, namely,

􏾉𝑥, 𝑦􏽼 = 𝑦∗ ⋅ 𝑥, 𝑥, 𝑦 are column vectors.

Then, 𝐴 ∈ O𝑛(ℝ) (𝐴 ∈ U𝑛(ℝ)) is a unitary operator on (𝑉, ⟨ , ⟩). If 𝜆 ∈ 𝐹 is an eigenvalue of
𝐴, then there exists 𝑣 ∈ 𝑉 ⧵ {0} such that: 𝐴𝑣 = 𝜆𝑣

⟨𝑣, 𝑣⟩ = ⟨𝐴𝑣,𝐴𝑣⟩ = ⟨𝜆 ⋅ 𝑣, 𝜆 ⋅ 𝑣⟩ = 𝜆 ⋅ 𝜆 ⋅ ⟨𝑣, 𝑣⟩ .

This implies 𝜆 ⋅ 𝜆 = 1.

Theorem 46 (Cartan-Dieudonné Theorem). For every 𝐴 ∈ O𝑛(ℝ), 𝐴 is a product of reflections.

Proof. From Theorem 42, we know that 𝐴 ∈ O𝑛(ℝ) can be written in the form
⎛
⎜⎜⎜⎜⎜⎜⎝

𝑠
􏾘
𝑖=1

(𝜆𝑖)

⎞
⎟⎟⎟⎟⎟⎟⎠ ⊕

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑟
􏾘
𝑗=1

𝐷𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

where 𝐷𝑗 is
⎛
⎜⎜⎜⎝
𝑎𝑗 −𝑏𝑗
𝑏𝑗 𝑎𝑗

⎞
⎟⎟⎟⎠ , for some 𝑎𝑗, 𝑏𝑗 ∈ ℝ, 𝑏𝑗 ≠ 0.

Lemma 8 asserts that 𝜆𝑖 = ±1 in (5). It is easy to see that (by Definition 45) if 𝑚 < 𝑛 and
𝑋 ∈ O𝑚(ℝ) is a reflection, then so is

⎛
⎜⎜⎜⎝
𝑋 0
0 𝐼𝑛−𝑚

⎞
⎟⎟⎟⎠ .

Thus, it suffices to show that each𝐷𝑗 is a product of reflections onℝ𝑛. Since each𝐷𝑗 ∈ O2(ℝ),
we know that

𝐷𝑗 ⋅ 𝐷𝑗
t = 𝐼2.

Therefore, 𝑎2𝑗 + 𝑏2𝑗 = 1, let 𝜃 ∈ [0, 2𝜋) such that 𝑎𝑗 = cos𝜃 and 𝑏𝑗 = sin𝜃. Note that
⎛
⎜⎜⎜⎝
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
cos𝜃 sin𝜃
sin𝜃 − cos𝜃

⎞
⎟⎟⎟⎠ ⋅
⎛
⎜⎜⎜⎝
1 0
0 −1

⎞
⎟⎟⎟⎠ .

We conclude that 𝐷𝑗 is a product of two reflections.

Next, we are going to discuss the singular value decomposition. We first define the
singular decomposition of a matrix 𝐴 ∈ U𝑛(ℝ).

Definition 47 (Singular value decomposition (S.V.D.)). Let 𝐴 ∈ 𝑀𝑚×𝑛(ℂ). If there exist 𝑃 ∈
U𝑛(ℝ) and 𝑄 ∈ U𝑚(ℝ) such that

𝑄∗ ⋅ 𝐴 ⋅ 𝑃 =
⎛
⎜⎜⎜⎝

Σ 𝑂𝑟×(𝑛−𝑟)
𝑂(𝑚−𝑟)×𝑟 𝑂(𝑚−𝑟)×(𝑛−𝑟)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
Σ 0
0 0

⎞
⎟⎟⎟⎠ ∈ 𝑀𝑚×𝑛(ℂ),

where 𝑂 is the zero matrix in𝑀(𝑚−𝑟)×(𝑛−𝑟)(ℂ) and Σ ∈ 𝑀𝑟(ℂ) is the diagonal matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑟

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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with 𝜎𝑖 ∈ ℝ and 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟. Then,

𝐴 = 𝑄 ⋅
⎛
⎜⎜⎜⎝
Σ 0
0 0

⎞
⎟⎟⎟⎠ ⋅ 𝑃∗

is called the singular value decomposition.

Theorem 48 (Singular value decomposition). Let 𝐴 ∈ 𝑀𝑚×𝑛(ℂ), then the singular value decom-
position of 𝐴 exists.

It is equivalent to prove the following theorem. Although it is not quite trivial that the
following theorem implies the singular value decomposition theorem, it is annoying to write
it properly, so we omit the details here.

Theorem 49 (Linear transformation version). Let 𝑉,𝑊 be two finite dimensional inner prod-
uct spaces over 𝐹 (ℝ or ℂ) and let 𝑇 ∶ 𝑉 → 𝑊 be a linear transformation. Then, there exist an
orthonormal basis ℬ = {𝑣1, 𝑣2, … , 𝑣𝑛} of 𝑉 such that

1. {𝑇(𝑣1), 𝑇(𝑣2), … , 𝑇(𝑣𝑟)} is orthogonal.

2. {𝑇(𝑣𝑟+1), 𝑇(𝑣𝑟+2), … , 𝑇(𝑣𝑛)} = 0.

Proof. By Theorem 26, the adjoint 𝑇∗ of 𝑇 exists. Consider 𝑆 ∶= 𝑇∗ ∘ 𝑇 ∶ 𝑉 → 𝑉. Then 𝑆 is
self-adjoint. Applying the spectral theory for self-adjoint operators (Theorem 41 for 𝐹 = ℂ
or Theorem 40 for 𝐹 = ℂ), we can find an orthonormal basis ℬ = {𝑣1, 𝑣2, … , 𝑣𝑛} consisting of
eigevectors of 𝑆. Let 𝜆𝑖 be the eigenvalue of 𝑣𝑖 (with respect to the transformation 𝑆), then

􏾊𝑇(𝑣𝑖), 𝑇(𝑣𝑗)􏽽 = 􏾊𝑇∗𝑇(𝑣𝑖), 𝑣𝑗􏽽 = 􏾊𝑆(𝑣𝑖), 𝑣𝑗􏽽 = 𝜆𝑖 􏾊𝑣𝑖, 𝑣𝑗􏽽 .

This gives
⎧⎪⎪⎨
⎪⎪⎩
𝑇(𝑣𝑖) ⟂ 𝑇(𝑣𝑗), if 𝑖 ≠ 𝑗.

‖𝑇(𝑣𝑖)‖
2 = 𝜆𝑖, for all 𝑖.

This proves the theorem.

Singular value decomposition generalize the definition of “inverse matrix”. We can de-
fine the pseudo inverse or the Moore-Penrose inverse.

Definition 50 (Pseudo inverse or Moore-Penrose inverse). Let 𝐴 ∈ 𝑀𝑚×𝑛(ℂ). Let the defini-
tion of 𝑃 and 𝑄 be the same as in Definition 47. Then, the Moore-Penrose inverse is defined
as

𝐴† ∶= 𝑃 ⋅
⎛
⎜⎜⎜⎝
Σ−1 0
0 0

⎞
⎟⎟⎟⎠ ⋅ 𝑄∗.

We also can define Moore-Penrose inverse of linear transformation.

Definition 51 (Intrinsic definition of Moore-Penrose inverse). Let 𝑉,𝑊 be two finite dimen-
sional inner product spaces and let 𝑇 ∶ 𝑉 → 𝑊 be a linear transformation. Then, the Moore-
Penrose inverse is the linear transformation 𝑇† ∶ 𝑊 → 𝑉 defined by:

𝑇†(𝑤) = (𝑇|(ker𝑇)⟂)−1 ∘ ProjIm𝑇(𝑤).
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Twodefinitions of theMoore-Penrose inverse aggeewith each other. TheMoore-Penrose
inverse is invented to solve system linear equations.

Theorem 52. Let 𝑉,𝑊 be two finite dimensioal inner product space and let 𝑇 ∶ 𝑉 → 𝑊. Given
𝑏 ∈ 𝑊. Then, 𝑇(𝑥) = 𝑏 has a solution in 𝑉 if and only if

𝑏 = 𝑇 ⋅ 𝑇†(𝑏). (6)

In addition, in this case, 𝑥 is a solution if and only if

𝑥 = 𝑇†(𝑏) + (Id𝑉 − 𝑇† ⋅ 𝑇)(𝑧), for some 𝑧 ∈ 𝑉.

Proof. 𝑇(𝑥) = 𝑏 has a solution in 𝑉 is equivalent to

𝑏 ∈ Im𝑇 ⟺ ProjIm𝑇(𝑏) = 𝑏
⟺ 𝑇 ∘ 𝑇†(𝑏) = 𝑏, by Definition 51.

To see the second assertion of the theorem, it suffices to show:

ker𝑇 = Im􏿴Id𝑉 − 𝑇† ∘ 𝑇􏿷.

However, it follows from the definition that 𝑇† ∘ 𝑇(𝑣) = Proj(ker𝑇)⟂(𝑣). Thus,

􏿴Id𝑉 − 𝑇† ∘ 𝑇􏿷 = Projker𝑇 .

This proves the theorem.

However, the equation is not always has a solution. In general, 𝑇†(𝑏) is the best approx-
imation of solutions of 𝑇(𝑥) = 𝑏 in the following sense:

􏿎𝑇 ∘ 𝑇†(𝑏) − 𝑏􏿎 = min
𝑥∈𝑉

‖𝑇(𝑥) − 𝑏‖ .

Theorem 53. Let 𝑉,𝑊 be two finite dimensional inner product space and let 𝑇 ∶ 𝑉 → 𝑊 be a linear
transformation. Given 𝑏 ∈ 𝑊. Then, 𝑇†(𝑏) is the best approximation of solutions of 𝑇(𝑥) = 𝑏.

Proof. Since 𝑇 ⋅ 𝑇† = ProjIm𝑇 , we have 􏿴𝑇 ⋅ 𝑇†(𝑏) − 𝑏􏿷 ∈ (Im𝑇)⟂. Thus,

‖𝑇(𝑥) − 𝑏‖2 = 􏿎𝑇(𝑥) − 𝑇 ⋅ 𝑇†(𝑏) + 𝑇 ⋅ 𝑇†(𝑏) − 𝑏􏿎
2

= 􏿎𝑇(𝑥) − 𝑇 ⋅ 𝑇†(𝑏)􏿎
2
+ 􏿎𝑇 ⋅ 𝑇†(𝑏) − 𝑏􏿎

2

≥ 􏿎𝑇 ⋅ 𝑇†(𝑏) − 𝑏􏿎
2
.

The equality holds if 𝑇(𝑥) = 𝑇 ⋅ 𝑇†(𝑏).

2.7 Bilinear forms
In the subsection, unless otherwise stated, we assume 𝐹 is one of the following fields: ℚ,

ℝ, ℂ, or the finite field 𝔽𝑝, and let 𝑉 be a finite dimensional vector space over 𝐹.

Definition 54. Let 𝐹 be a field. Let

Ξ = {𝑛 ∈ ℕ ∶ 𝑛 ⋅ 𝑥 = 0, for all 𝑥 ∈ 𝐹} .
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Then, the characteristic of 𝐹 is defined as:

char (𝐹) =

⎧⎪⎪⎨
⎪⎪⎩
minΞ , if Ξ ≠ ∅
0 , otherwise

.

Definition 55 (Bilinear form). Let 𝑉 be a vector space over 𝐹. Then, a bilinear form 𝐵 is a
function

𝐵 ∶ 𝑉 × 𝑉 → 𝐹

such that 𝐵 is component-wise linear. That is, 𝐵 is a linear function if we fix one variable.

Thus, the inner product on a vector space overℝ is a bilinear form. If 𝐵 is a bilinear form
on a finite dimensional vector space 𝑉, then it induce two linear maps from 𝑉 to 𝑉∨.

𝑙𝐵 ∶ 𝑉 → 𝑉∨

𝑣 ↦ 𝑙𝐵(𝑣)(𝑤) = 𝐵(𝑣, 𝑤), for all 𝑤 ∈ 𝑉
𝑟𝐵 ∶ 𝑉 → 𝑉∨

𝑣 ↦ 𝑟𝐵(𝑣)(𝑤) = 𝐵(𝑤, 𝑣), for all 𝑤 ∈ 𝑉

Conversely, given a linear transformation f ∶ 𝑉 → 𝑉∨, 𝑓 induces two bilinear forms:

𝐵𝑙f(𝑣, 𝑤) ∶= 𝑓(𝑣)(𝑤)

𝐵𝑟f (𝑣, 𝑤) ∶= 𝑓(𝑤)(𝑣)

This explains there is a bijection between

{all bilinear forms 𝐵 ∶ 𝑉 × 𝑉 → 𝐹} ≃ Hom𝐹(𝑉,𝑉∨).

We now fix a basis ℬ = {𝑣1, 𝑣2, … , 𝑣𝑛} of 𝑉. We get an isomorphism

{all bilinear forms 𝐵 ∶ 𝑉 × 𝑉 → 𝐹}⟷𝑀𝑛(𝐹)
𝐵⟷ Ω𝐵,ℬ = 􏿴𝐵(𝑣𝑖, 𝑣𝑗)􏿷

.

Similar to what we have shown in the theory of inner product space, if we change the basis
to𝒜, then

Ω𝐵,𝒜 = 𝑃t ⋅ Ω𝐵,ℬ ⋅ 𝑃,

where 𝑃 is the matrix sends ℬ to𝒜.
Recall that we have defined the (external) direct sum of two vector spaces in Definition

20. For two vector spaces 𝑉,𝑊 with bilinear forms 𝐵𝑣, 𝐵𝑤 respectively, we can defined a
bilinear form 𝐵 on 𝑉 ⊕𝑊, defined by

𝐵 ((𝑣1, 𝑤1), (𝑣2, 𝑤2)) ∶= 𝐵𝑣(𝑣1, 𝑣2) + 𝐵𝑤(𝑤1, 𝑤2),

and we often write 𝐵 = 𝐵𝑣 ⊕ 𝐵𝑤. This definition of the direct sum of bilinear forms agrees
with the definition of internal direct sum in the following sense:
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Let (𝑉, 𝐵) be a vector space with a bilinear form. 𝑊1 and𝑊2 are subspaces of
𝑉 such that𝑊1 ⊕𝑊2 = 𝑉. Then,

𝐵 = 𝐵|𝑊1
⊕ 𝐵|𝑊2

,

if

𝐵(𝑤1, 𝑤2) = 0, for all 𝑤1 ∈ 𝑊1 and 𝑤2 ∈ 𝑊2.

Hence, this direct sum is often called orthogonal sum. Next, we are going to define the
concept of radical.

Definition 56 (Radical). Let 𝐵 ∶ 𝑉 × 𝑉 → 𝐹 be a bilinear form. Define

rad𝐿 (𝑉) = {𝑣 ∈ 𝑉 ∶ 𝐵(𝑣, 𝑤) = 0, for all 𝑤 ∈ 𝑉}
rad𝑅 (𝑉) = {𝑣 ∈ 𝑉 ∶ 𝐵(𝑤, 𝑣) = 0, for all 𝑤 ∈ 𝑉}

Definition 57 (Non-degenerate). A bilinear form is non-degenerate if rad𝑅 (𝑉) = {0}.

In fact, the following three statements are equivalent:

1. rad𝑅 (𝑉) = {0}.

2. rad𝐿 (𝑉) = {0}.

3. detΩ𝐵 ≠ 0.

Definition 58 (Alternating and symmetric bilinear forms). Let 𝐵 ∶ 𝑉 × 𝑉 → 𝐹 be a bilinear
form.

1. 𝐵 is alternating if 𝐵(𝑣, 𝑤) = −𝐵(𝑤, 𝑣), for all 𝑣, 𝑤 ∈ 𝑉.

2. 𝐵 is symmetric if 𝐵(𝑣, 𝑤) = 𝐵(𝑤, 𝑣), for all 𝑣, 𝑤 ∈ 𝑉.

We first discuss the alternating form. Now, suppose𝐵 is non-degenerate and alternating.
Let 𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a basis of 𝑉 and let Ω𝐵 = 􏿴𝐵(𝑣𝑖, 𝑣𝑗)􏿷 be the matrix attached to 𝒜.
Then,

Ω𝐵
t = −Ω𝐵.

If a matrix𝐴 ∈ 𝑀𝑛(𝐹) satisfied𝐴t = −𝐴, then it is called skew-symmetric. Next, we want
to find a basis𝒜 such that the matrix Ω𝐵,𝒜 is as simple as possible.

Definition 59 (Symplectic basis). Abasis {𝑒1, 𝑒2, … , 𝑒𝑟, 𝑓1, 𝑓2, … , 𝑓𝑟} (dim𝑉 = 2𝑟) of𝑉 is called
a symplectic basis for 𝐵 if

1. 𝐵(𝑒𝑖, 𝑒𝑗) = 𝐵(𝑓𝑖, 𝑓𝑗) = 0, for all 𝑖, 𝑗.

2. 𝐵(𝑒𝑖, 𝑓𝑗) = 0, if 𝑖 ≠ 𝑗.

3. 𝐵(𝑒𝑖, 𝑓𝑖) = 0, for all 𝑖.
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In other words, if𝒜 is a symplectic basis, then

Ω𝐵,𝒜 =
⎛
⎜⎜⎜⎝
𝑂𝑟 𝐼𝑟
−𝐼𝑟 𝑂𝑟

⎞
⎟⎟⎟⎠ ,

where 𝑂𝑟, 𝐼𝑟 ∈ 𝑀𝑟(𝐹) are the zero matrix and the identity matrix, respectively.

Theorem 60. Assume char(𝐹) ≠ 2. If 𝑉 is equipped with a non-degenerate and alternating form 𝐵,
then dim𝑉 is even and 𝑉 has a symplectic basis.

Proof. 𝐵 is alternating and char(𝐹) ≠ 2, so for any 𝑣 ∈ 𝑉,

𝐵(𝑣, 𝑣) = −𝐵(𝑣, 𝑣) ⟹ 𝐵(𝑣, 𝑣) = 0.

Let 𝑒1 ∈ 𝑉 ⧵ {0}. Choose 𝑓1 such that 𝐵(𝑒1, 𝑓1) = 1. (This could be done because 𝐵 is non-
degenerate.) Let𝑊 = 𝐹𝑒1 ⊕ 𝐹𝑓1 = span𝐹{𝑒1, 𝑓1}. We define𝑊⟂ as

𝑊⟂ ∶= {𝑣 ∈ 𝑉 ∶ 𝐵(𝑣, 𝑤) = 0, for all 𝑤 ∈ 𝑊}.

We claim 𝑉 = 𝑊 ⊕ 𝑊⟂ is an internal direct sum as vector space with bilinear form. To
see this, it suffices to show that 𝑉 = 𝑊 ⊕ 𝑊⟂ is an internal direct sum as vector space.
(∵𝐵(𝑊,𝑊⟂) = 0.)

1. 𝑊 and𝑊⟂ is linearly independent.
It is equivalent to prove𝑊∩𝑊⟂ = {0}. Let 𝑣 ∈ 𝑊 ∩𝑊⟂. Then, 𝑣 = 𝑎 ⋅ 𝑒1+𝑏 ⋅ 𝑓1 for some
𝑎, 𝑏 ∈ 𝐹.

𝑣 ∈ 𝑊⟂ ⟹ 𝐵(𝑣, 𝑒1) = 𝑎 = 0; 𝐵(𝑣, 𝑒2) = 𝑏 = 0.

2. 𝑊 and𝑊⟂ generate 𝑉.
It is equivalent to prove for each 𝑣 ∈ 𝑉, there exist 𝑎, 𝑏 ∈ 𝐹 such that

(𝑣 − 𝑎 ⋅ 𝑒1 − 𝑏 ⋅ 𝑓1) ∈ 𝑊⟂.

Some simple calculations show that

𝑎 = 𝐵(𝑣, 𝑓1), 𝑏 = −𝐵(𝑣, 𝑒1),

satisfies the condition.

Thus, (𝑉, 𝐵) = (𝑊, 𝐵|𝑊) ⊕ (𝑊⟂, 𝐵|𝑊⟂). Note that 𝐵|𝑊⟂ is a non-degenerate (why?) and alter-
nating form. By induction, dim𝑊⟂ = 2𝑟 − 2 for some 𝑟 ∈ ℕ, and𝑊⟂ has a symplectic basis
{𝑒2, 𝑒3, … , 𝑒𝑟, 𝑓2, 𝑓3, … , 𝑓𝑟} for 𝐵|𝑊⟂ . We conclude that dim𝑉 = 2𝑟 and {𝑒1, 𝑒2, … , 𝑒𝑟, 𝑓1, 𝑓2, … , 𝑓𝑟}
is a symplectic basis for (𝑉, 𝐵).

Now, we discuss the non-degenerate symmetric form on 𝑉.

Theorem 61. Assume char(𝐹) ≠ 2. If 𝑉 is equipped with a non-degenerate and symmetric form 𝐵,
then there exist a basis𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} of 𝑉 such that

𝐵(𝑣𝑖, 𝑣𝑗), if 𝑖 ≠ 𝑗.
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In other words,

Ω𝐵,𝒜 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2

⋱
𝑎𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a diagonal matrix where 𝑎𝑖 = 𝐵(𝑣𝑖, 𝑣𝑖). Note that 𝑎𝑖 ≠ 0 since 𝐵 is non-degenerate.

Proof. We claim that there exists 𝑣 ∈ 𝑉 ⧵ {0} such that 𝐵(𝑣, 𝑣) ≠ 0. If such 𝑣 does not exist, then

2𝐵(𝑣, 𝑤) = 𝐵(𝑣 + 𝑤, 𝑣 + 𝑤) − 𝐵(𝑣, 𝑣) − 𝐵(𝑤,𝑤) = 0, for all 𝑣, 𝑤 ∈ 𝑉.

Since char(𝐹) ≠ 2, we have 𝐵(𝑣, 𝑤) = 0 for all 𝑣, 𝑤 ∈ 𝑉. Therefore, there exists 𝑣1 ∈ 𝑉 ⧵ {0} such
that 𝐵(𝑣1, 𝑣1) ≠ 0. Let𝑊 = 𝐹𝑣1 and let

𝑊⟂ ∶= {𝑣 ∈ 𝑉 ∶ 𝐵(𝑣, 𝑣1) = 0}.

Then, (𝑉, 𝐵) = (𝑊, 𝐵|𝑊) ⊕ (𝑊⟂, 𝐵|𝑊⟂) and we can proceed by induction.

Next, we can classify all symmetric bilinear forms on finite dimensional vector space
over ℝ. Let 𝑉 be a real vector space with a symmetric bilinear form 𝐵. Suppose 𝐵 is non-
degenerate, then by Theorem 61, there is a basis𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} such that

Ω𝐵,𝒜 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2

⋱
𝑎𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(𝑎𝑖 ≠ 0.)

Replacing𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛}with𝒜′

􏿼
𝑣1
√|𝑎1|

, 𝑣2
√|𝑎2|

, … , 𝑣𝑛
√|𝑎𝑛|

􏿿 ,

then

Ω𝐵,𝒜′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sgn(𝑎1)
sgn(𝑎2)

⋱
sgn(𝑎𝑛)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, we can define the signature of a non-degenerate symmetric bilinear formby count-
ing the positive and negative elements on the diagonal matrix Ω𝐵,𝒜.

Definition 62 (Signature). If 𝐵 is a non-degenerate symmetric bilinear form on a vector space
𝑉 over ℝ, then define the signature (𝑟, 𝑠) of 𝑉 so that

1. 𝑟 = #{𝑖 ∶ sgn(𝑎𝑖) = 1}.

2. 𝑠 = #{𝑖 ∶ sgn(𝑎𝑖) = −1}.

We have 𝑟 + 𝑠 = dim𝑉 since 𝐵 is non-degenerate.
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If 𝐵 is degenerate (and symmetric), we also can define its signature. Note that rad𝐿 (𝑉) =
rad𝑅 (𝑉) (𝐵 is symmetric.) Then, 𝑉/rad (𝑉) is a vector space, and induced a bilinear form �̃�
from 𝐵 defined by

�̃�([𝑣1], [𝑣2]) = 𝐵(𝑣1, 𝑣2).

It is easy to see that �̃� is well-defined and one can check that �̃� is a non-degenerate symmetric
bilinear form. We define the signature of 𝐵 to be the signature of �̃�.

Theorem 63 (Sylvester’s Law of Inertia). Non-degenerate symmetric bilinear forms over finite
dimensional real vector spaces are completely determined by their signature. That is, there exists a
bijection preserving the bilinear form structure if two spaces have the same signature. In other words,
signature is a well-defined invariant for 𝑉 up to isometries.

Remark.

1. Theorem 63 is a corollary of Theorem 72, we will not give the proof here.

2. The non-degenerate symmetric bilinear form 𝐵 is positive definite (inner product) if
the signature of 𝐵 is (dim𝑉, 0).

2.8 Quadratic forms and Witt decomposition
In this subsection, we assume 𝐹 is one of the fields: ℚ, ℝ, ℂ, and 𝔽𝑝 (𝑝 ≠ 2). Let 𝑉 be a

finite dimensional vector space over 𝐹.

Definition 64. A quadratic form 𝑄 ∶ 𝑉 → 𝐹 is a function on 𝑉 such that

1. 𝑄(𝛼𝑣) = 𝛼2𝑄(𝑣).

2. The map 𝐵𝑄 ∶ 𝑉 × 𝑉 → 𝐹 defined by

(𝑥, 𝑦) ↦ 𝑄(𝑥 + 𝑦) − 𝑄(𝑥) − 𝑄(𝑦)

is a bilinear form.

This bilinear form 𝐵𝑄 is called the bilinear form attached to 𝑄.

In fact, we have a bijection between symmetric bilinear forms and quadratic forms. If 𝐵
is a symmetric bilinear form, then

𝑄(𝑥) = 1
2𝐵(𝑥, 𝑥)

is a quadratic form. Similarly, if 𝑄 is a quadratic form, then 𝐵𝑄 define in the Definition 64
is a symmetric bilinear form. Moreover, if dim𝐹𝑉 = 𝑛, then there is a bijection between all
quadratic forms and all homogeneous polynomial 𝐹[𝑥1, 𝑥2, … , 𝑥𝑛]with degree 2.

Let𝒜 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a basis of 𝑉, then

𝑄

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾜
𝑖=1
𝛼𝑖𝑣𝑖

⎞
⎟⎟⎟⎟⎟⎠ =

𝑛
􏾜
𝑖=1

𝑛
􏾜
𝑗=1

1
2𝛼𝑖𝐵𝑄(𝑣𝑖, 𝑣𝑗)𝛼𝑗

𝒜⟷
𝑛
􏾜
𝑖=1

𝑛
􏾜
𝑗=1
𝑐𝑖𝑗𝑥𝑖𝑥𝑗 ∈ 𝐹[𝑥1, 𝑥2, … , 𝑥𝑛].
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The polynomial on the right side is called the polynomial attached to 𝑄, and denote it by
𝑓𝑄. Thus, we can study the property of quadratic forms and convert it to the language of
polynomials or bilinear forms.

Definition 65. A quadratic space is a vector space 𝑉 equipped with a quadratic form 𝑄 (or
a symmetric bilinear form, because of the bijection we just demonstrated.)

Definition 66 (Isometric and isometry). Let (𝑉1, 𝑄1) and (𝑉2, 𝑄2) be two quadratic spaces.
We say 𝑉1 and 𝑉2 are isometric if 𝑉1 is isomorphic to 𝑉2 as a quadratic space. Namely, there
exists a isomorphism 𝑇 ∶ 𝑉1 → 𝑉2 as vector spaces such that

𝑄2(𝑇(𝑣)) = 𝑄1(𝑣), for all 𝑣 ∈ 𝑉1.

Such isomorphism 𝑇 is called an isometry.

The quadratic space is kind of like a generalization of inner product spaces. Here we
show an example of isometry. Let (𝑉,𝑄) be a quadratic space. Let 𝑣0 ∈ 𝑉 with 𝑄(𝑣0) ≠ 0.
Define

𝑇 ∶ 𝑉 → 𝑉

𝑥 ↦ 𝑥 −
2𝐵𝑄(𝑥, 𝑣0)
𝐵𝑄(𝑣0, 𝑣0)

𝑣0,

where 𝐵𝑄 is the bilinear form associated with the quadratic form 𝑄. We claim that 𝑇 is an
isometry. Note that

𝑄(𝑇(𝑥)) = 𝑄(𝑥 −
2𝐵𝑄(𝑥, 𝑣0)
𝐵𝑄(𝑣0, 𝑣0)

𝑣0)

= 𝐵𝑄(𝑥, −
2𝐵𝑄(𝑥, 𝑣0)
𝐵𝑄(𝑣0, 𝑣0)

𝑣0) + 𝑄(𝑥) + 􏿶
2𝐵𝑄(𝑥, 𝑣0)
𝐵𝑄(𝑣0, 𝑣0)

􏿹
2

𝑄(𝑣0)

= −
2𝐵𝑄(𝑥, 𝑣0)
𝐵𝑄(𝑣0, 𝑣0)

𝐵𝑄(𝑥, 𝑣0) + 𝑄(𝑥) + 􏿶
2𝐵𝑄(𝑥, 𝑣0)
𝐵𝑄(𝑣0, 𝑣0)

􏿹
2

⋅ 12𝐵𝑄(𝑣0, 𝑣0)

= 𝑄(𝑥)

holds for all 𝑥 ∈ 𝑉. 𝑇 is like the reflection define in inner product spaces. We call 𝑇 the
reflection along the hyperplane orthogonal to 𝑣0 with respect to the quadratic form 𝑄. Also,
we found that 𝑄(𝑣0) is an important property. so we give the following definitions.

Definition 67. Given a quadratic space (𝑉,𝑄). Define the following terminologies.

1. 𝑉 is non-degenerate if the bilinear form 𝐵𝑄 associated with 𝑄 is non-degenerate.

2. A vector 𝑣 ∈ 𝑉 is isotropic if 𝑄(𝑣) = 0.

3. A vector 𝑣 ∈ 𝑉 is anisotropic if 𝑄(𝑣) ≠ 0.

4. A quadratic space is isotropic if 𝑉 is non-degenerate and contains an isotropic vector.

5. A quadratic space is anisotropic if 𝑉 every non-zero vector in 𝑉 is anisotropic.
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6. A subspace𝑊 ⊂ 𝑉 is totally isotropic if 𝑄|𝑊 = 0.

Definition 68 (Hyperbolic plane). A 2-dimensional quadratic spaceℍ is called a hyperbolic
plane if 𝑓𝑄(𝑥1, 𝑥2) = 𝑥1𝑥2 for a suitable choice of basis. (Recall that 𝑓𝑄 is the polynomial
attached to 𝑄.) In other words, there exists a basis {𝑣1, 𝑣2} such that

􏿴𝐵𝑄(𝑣𝑖, 𝑣𝑗)􏿷 =
⎛
⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎠ .

Theorem 69. Let 𝑉 be a non-degenerate quadratic space. Let 𝑈 ⊂ 𝑉 be a totally isotropic subspace
with a basis {𝑢1, 𝑢2, … , 𝑢𝑚}. Then, there exists a totally isotropic subspace 𝑈′ = span𝐹{𝑢

′
1, 𝑢′2, … , 𝑢′𝑚}

such that

𝐵(𝑢𝑖, 𝑢′𝑗 ) =

⎧⎪⎪⎨
⎪⎪⎩
1 , if 𝑖 = 𝑗
0 , otherwise

.

Proof. We prove by induction on dim𝐹𝑈 = 𝑚. If𝑚 = 1,𝑈 = 𝐹 ⋅𝑢1. Since 𝑉 is non-degenerate,
𝐵𝑄 is non-degenerate. Thus, there exists a vector 𝑤 ∈ 𝑉 such that 𝐵𝑄(𝑢1, 𝑤) = 1. Note that
𝑤 ∉ 𝐹 ⋅ 𝑢1, otherwise 𝐵𝑄(𝑢1, 𝑤) = 0. Let 𝑢′1 = 𝑤 + 𝛼 ⋅ 𝑢1, we claim that there is an 𝛼 ∈ 𝐹 such
that 𝑄(𝑢′1) = 0. (Undetermined coefficient method.) Then,

𝑄(𝑢′1) = 𝑄(𝑤 + 𝛼 ⋅ 𝑢1) = 𝐵𝑄(𝑤, 𝛼 ⋅ 𝑢1) + 𝑄(𝑤) + 𝑄(𝑢1) = 𝛼 + 𝑄(𝑤).

Hence, 𝑢′1 = 𝑤 − 𝑄(𝑤)𝑢1 satisfies the requirement.
Now, suppose the assertion is true for some 𝑚 = 𝑘 ∈ ℕ. Assume 𝑚 = 𝑘 + 1 > 1. Let

𝑊 = span𝐹{𝑢2, 𝑢3, … , 𝑢𝑚} ⊂ 𝑈 ⊂ 𝑉 be a totally isotropic subspace. Define 𝑊⟂ ∶= {𝑣 ∈ 𝑉 ∶
𝐵𝑄(𝑣, 𝑤) = 0, for all 𝑤 ∈ 𝑊}. Then, 𝐹 ⋅ 𝑢1 ⊂ 𝑊⟂ is an totally isotropic subspace. Note that
𝑄|𝑊⟂ is non-degenerate (otherwise 𝑄 would be degenerate). Thus, by the previous step,
there exists 𝑢′1 ∈ 𝑊⟂ such that 𝐻1 ∶= span𝐹{𝑢1, 𝑢

′
1} is a hyperbolic plane and 𝐵𝑄(𝑢1, 𝑢′1) = 1.

Since 𝐻1 ⊂ 𝑊⟂, we have 𝑊 ⊂ 𝐻⟂
1 , dim𝑊 ≤ 𝑘, and 𝑄|𝐻⟂1 is non-degenerate. By the

induction hypothesis, there exists a totally isotropic subspace span𝐹{𝑢
′
2, 𝑢′3, … , 𝑢′𝑚} ⊂ 𝐻⟂

1 such
that

𝐵𝑄(𝑢𝑖, 𝑢′𝑗 ) =

⎧⎪⎪⎨
⎪⎪⎩
1 , if 𝑖 = 𝑗
0 , otherwise

(2 ≤ 𝑖, 𝑗 ≤ 𝑚).

Then, 𝑈′ = span𝐹{𝑢
′
1, 𝑢′2, … , 𝑢′𝑚} is the desired subspace.

Corollary. Let 𝑉 be a non-degenerate quadratic space and 𝑈 ⊂ 𝑉 be a totally isotropic sub-
space with dimension 𝑚. Then, there exists a totally isotropic subspace 𝑈′ such that

𝑈 ∩𝑈′ = {0}, and 𝑈 ⊕𝑈′ ≃ ℍ𝑚.

Theorem 70 (Witt decomposition). Let 𝑉 be a quadratic space. Then we have the following or-
thogonal direct sum,

𝑉 ≃ rad (𝑉) ⊕ℍ𝑚 ⊕ 𝑉0,

where rad (𝑉) is the radical of (𝑉, 𝐵𝑄),ℍ denote a hyperbolic plane, and𝑉0 is an anisotropic quadratic
space. Note that ≃ means isometric. (Recall Definition 66.)
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Proof. Choose any subspace 𝑊 ⊂ 𝑉 such that 𝑉 = rad (𝑉) ⊕ 𝑊 (as vector spaces). Then,
rad (𝑉) ⟂ 𝑊 by the definition of the radical of 𝑉. This indicate that 𝑉 = rad (𝑉) ⊕ 𝑊 as
quadratic spaces. (Recall the direct sum of vector spaces with bilinear form.) Also, (𝑊,𝑄|𝑊)
is non-degenerate. (why?) Thus, we may assume 𝑉 is non-degenerate, that is rad (𝑉) = {0}.
We prove by induction on dim𝑉. If dim𝑉 = 1, then 𝑉 is anisotropic.

Now, suppose dim𝑉 > 1 and 𝑉 is NOT anisotropic. Then, there exists 𝑢 ∈ 𝑉 ⧵ {0} such
that 𝑢 is isotropic, namely, 𝑄(𝑢) = 0. From Theorem 69, we obtain that there is 𝑢′ ∈ 𝑉 such
that

𝐵𝑄(𝑢, 𝑢′) = 1 and 𝑢 is isotropic.

Hence, 𝐻 ∶= span𝐹{𝑢, 𝑢
′} is a hyperbolic plane. We can decompose 𝑉 into 𝑉 = 𝐻 ⊕ 𝐻⟂.

Then, we have 𝑄|𝐻⟂ is non-degenerate and dim𝐻⟂ < dim𝑉, so we can apply the induction
hypothesis on 𝐻⟂. Therefore, 𝐻⟂ ≃ ℍ𝑚−1 ⊕ 𝑉0, where 𝑉0 is an anisotropic subspace. This
completes the proof.

Next, we are going to prove that such orthogonal direct sum is unique. We first prove
the following theorem.

Theorem 71 (Witt cancellation Theorem). Let𝑉1, 𝑉2,𝑈1, and𝑈2 be finite dimensional quadratic
spaces over 𝐹. If 𝑉1 ≃ 𝑉2 and 𝑉1 ⊕ 𝑈1 ≃ 𝑉2 ⊕ 𝑈2 are two isometric relation. Then, 𝑈1 ≃ 𝑈2 is
isometric.

Proof. We first note that 𝑉2 ⊕ 𝑈2 ≃ 𝑉1 ⊕ 𝑈1 ≃ 𝑉2 ⊕ 𝑈1, thus we may assume 𝑉1 = 𝑉2 = 𝑉.

Case 1: 𝑉 is totally isotropic and 𝑈1 is non-degenerate.
Write 𝑇 to denote the isometry of 𝑉 ⊕𝑈1 to 𝑉 ⊕𝑈2. Let𝒜 = {𝑣1, … , 𝑣𝑛}, ℬ1 = {𝑢1, … , 𝑢𝑟},

and ℬ2 = {𝑤1, … , 𝑤𝑟} be bases of 𝑉, 𝑈1, and 𝑈2 respectively. Let the matrices of quadratic
form on 𝑉 ⊕ 𝑈2 with respect to 𝑇(𝒜) ⊔ 𝑇(ℬ1) and𝒜⊔ℬ2 be

𝑀1 =
⎛
⎜⎜⎜⎝
0 0
0 𝐵1

⎞
⎟⎟⎟⎠ and 𝑀2 =

⎛
⎜⎜⎜⎝
0 0
0 𝐵2

⎞
⎟⎟⎟⎠ respectively.

Here 𝐵𝑖 is the matrix of the quadratic form of 𝑈𝑖. (It is useful here that 𝑉 is totally isotropic
and the the direct sum is “orthogonal” direct sum.) Since 𝑉 ⊕ 𝑈1 ≃ 𝑉 ⊕ 𝑈2, there is an
invertible matrix 𝑃 ∈ 𝑀𝑛+𝑟(𝐹) such that

𝑃t ⋅ 𝑀2 ⋅ 𝑃 = 𝑀1.

If we write

𝑃 =
⎛
⎜⎜⎜⎝
𝐴 𝐵
𝐶 𝐷

⎞
⎟⎟⎟⎠ ,

where 𝐴 ∈ 𝑀𝑛(𝐹) and 𝐷 ∈ 𝑀𝑟(𝐹), then we have 𝐷t ⋅ 𝐵2 ⋅ 𝐷 = 𝐵1. Note that we assume 𝑈1,
or more precisely, the bilinear form that 𝑈1 equipped with, is non-degenerate, thus 𝐵1 is
invertible and so is 𝐷. This shows that 𝑈1 and 𝑈2 are isometric.

Case 2: 𝑉 is totally isotropic.
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Write𝑈1 = rad (𝑈1) ⊕𝑊1 and𝑈2 = rad (𝑈2) ⊕𝑊2, where𝑊1 and𝑊2 are non-degenerate
quadratic space. Then,

𝑉 ⊕ 𝑈1 ≃ 𝑉 ⊕ 𝑈2 ⟹ 𝑉 ⊕ rad (𝑈1) ⊕ 𝑊1 ≃ 𝑉 ⊕ rad (𝑈2) ⊕ 𝑊2

⟹ rad (𝑉 ⊕ 𝑈1) = 𝑉 ⊕ rad (𝑈1) ≃ 𝑉 ⊕ rad (𝑈2) = rad (𝑉 ⊕ 𝑈2)

By Case 1,𝑊1 ≃ 𝑊2. It is obvious that rad (𝑉1) ≃ rad (𝑉2). Thus we have 𝑈1 ≃ 𝑈2.

Case 3: For general 𝑉.
We prove by induction on 𝑛 = dim𝑉. If 𝑛 = 1, write 𝑉 = 𝐹 ⋅ 𝑣. If 𝑣 is isotropic, then the

Theorem follows from Case 2. Now, suppose 𝑣 is anisotropic. Let 𝑇 denote the isometry of
𝐹𝑣 ⊕ 𝑈1 to 𝐹𝑣 ⊕ 𝑈2. We have

𝐹(𝑇(𝑣)) ⊕ 𝑇(𝑈1) ≃ 𝐹𝑣 ⊕ 𝑈2.

By Lemma 9, there is an isometry 𝜏 ∶ 𝐹𝑣 ⊕ 𝑈2 → 𝐹𝑣 ⊕ 𝑈2 such that

𝜏(𝑇(𝑣)) = 𝑣.

It follows that

𝜏 ∘ 𝑇(𝑈1) = (𝐹𝑣)⟂ = 𝑈2.

Therefore, 𝜏 ∘ 𝑇 is an isometry of 𝑈1 to 𝑈2. Now, suppose 𝑛 = dim𝑉 > 1, then 𝑉 = 𝐹𝑣1 ⊕
𝐹𝑣2 ⊕⋯ ⊕ 𝐹𝑣𝑛 (orthogonal direct sum) with 𝑄(𝑣𝑖) = 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑛). This is possible because
of Theorem 61. It follows that

𝑉 ⊕ 𝑈1 ≃ 𝑉 ⊕ 𝑈2 ⟹ 𝐹𝑣1 ⊕ (𝐹𝑣2 ⊕⋯⊕ 𝐹𝑣𝑛 ⊕ 𝑈1) ≃ 𝐹𝑣1 ⊕ (𝐹𝑣2 ⊕⋯⊕ 𝐹𝑣𝑛 ⊕ 𝑈2)
⟹ 𝐹𝑣2 ⊕⋯⊕ 𝐹𝑣𝑛 ⊕ 𝑈1 ≃ 𝐹𝑣2 ⊕⋯⊕ 𝐹𝑣𝑛 ⊕ 𝑈2

⟹ 𝑈1 ≃ 𝑈2 (by the induction hypothesis).

The discussions above prove the theorem.

Lemma 9. If 𝑥, 𝑦 ∈ 𝑉 are two anisotropic vectors in a quadratic space, such that 𝑄(𝑥) = 𝑄(𝑦).
Then there exists an isometry 𝜏 ∶ 𝑉 → 𝑉 with 𝜏(𝑥) = 𝑦.

Proof.

Case 1: 𝑥 − 𝑦 is anisotropic.

Consider 𝜏 = 𝑇𝑥−𝑦 the reflection along the hyperplane orthogonal to the vector 𝑥 − 𝑦.
Precisely, we define

𝜏(𝑣) = 𝑣 − 2 ⋅
𝐵𝑄(𝑣, 𝑥 − 𝑦)

𝐵𝑄(𝑥 − 𝑦, 𝑥 − 𝑦)
⋅ (𝑥 − 𝑦).

Plug in 𝑣 = 𝑥 gives

𝜏(𝑥) = 𝑥 − 2 ⋅
𝐵𝑄(𝑥, 𝑥 − 𝑦)

𝐵𝑄(𝑥 − 𝑦, 𝑥 − 𝑦)
⋅ (𝑥 − 𝑦)

= 𝑥 − 2 ⋅
𝐵𝑄(𝑥, 𝑥) − 𝐵𝑄(𝑥, 𝑦)

2 ⋅ 􏿴𝐵𝑄(𝑥, 𝑥) − 𝐵𝑄(𝑥, 𝑦)􏿷
⋅ (𝑥 − 𝑦) (∵𝑄(𝑥) = 𝑄(𝑦))

= 𝑥 − (𝑥 − 𝑦) = 𝑦.
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Case 2: 𝑥 − 𝑦 is isotropic.

Note that𝑄(𝑥 − 𝑦) +𝑄(𝑥+ 𝑦) = 2 􏿴𝑄(𝑥) + 𝑄(𝑦)􏿷 (By Parallelogram Theorem.) This shows
that −𝑥 − 𝑦 is isotropic if 𝑥 − 𝑦 is anisotropic. Let 𝜏 = 𝑇−𝑥−𝑦 ∘ −Id𝑉 be a composition of two
isometries. Then 𝜏(𝑥) = 𝑇−𝑥−𝑦(−𝑥) = 𝑦.

The discussions above complete the proof.

Now, we can prove the following theorem.

Theorem 72 (Uniqueness of Witt Decomposition). Let 𝑉 be a quadratic space. If

𝑉 ≃ rad (𝑉) ⊕ℍ𝑚 ⊕ 𝑉0 ≃ rad (𝑉) ⊕ℍ𝑚′ ⊕ 𝑉′
0,

where 𝑉0 and 𝑉′
0 are anisotropic, then 𝑚 = 𝑚′ and 𝑉0 ≃ 𝑉′

0.

Proof. Witt Cancellation Theorem (Theorem 71) shows that

ℍ𝑚 ⊕ 𝑉0 ≃ ℍ𝑚′ ⊕ 𝑉′
0.

We claim that𝑚 is the dimensional ofmaximal totally isotropic subspaces ofℍ𝑚⊕𝑉0, this can
be seen from the proof of Theorem 70. Thus, 𝑚 = 𝑚′ and it follows from Witt Cancellation
Theorem (Theorem 71) that 𝑉0 ≃ 𝑉′

0.

Recall that in the last subsection, we introduced the concept of signature. There is a
theorem we have not proved yet. Here we have a fast way to prove it. Proof of Theorem 63.
If (𝑉, 𝐵) has signature (𝑝, 𝑞). Without much loss of generality, we assume 𝑝 ≥ 𝑞. Then, 𝑉 ≃
ℍ𝑞 ⊕ 𝐼𝑝−𝑞, where 𝐼𝑝−𝑞 = ℝ ⋅ 𝑣1 ⊕⋯⊕ℝ ⋅ 𝑣𝑝−𝑞 is an anisotropic space such that

𝑄(
𝑝−𝑞
􏾜
𝑖=1
𝑥𝑖𝑣𝑖) =

𝑝−𝑞
􏾜
𝑖=1
𝑥2𝑖 .

This shows there is a 1-1 correspondence between signatures and Witt decompositions. This
proves the theorem. □

Theorem 73 (Cartan-Dieudonné Theorem). Let 𝑉 be a non-degenerate quadratic space with di-
mension 𝑛. Let the orthogonal group of 𝑉 be O(𝑉) = {𝑇 ∶ 𝑉 → 𝑉, 𝑇 is isometry}. Then for each
𝜎 ∈ 𝑂(𝑉), 𝜎 is a product of at most 𝑛 reflections.

In fact we have proved this theorem, when 𝑉 is an inner product space over ℝ, then we
can use the spectral theory of inner product space. However, we do not have these tools here,
hence the proof is much harder.

Proof. We first write O(𝑉) = Σ1 ⊔ Σ2 ⊔ Σ3, where

Σ1 = {𝜎 ∈ O(𝑉) ∶ ∃ anisotropic 𝑥 ∈ 𝑉 such that 𝜎(𝑥) = 𝑥}
Σ2 = {𝜎 ∈ O(𝑉) ∶ ∃ anisotropic 𝑥 ∈ 𝑉 such that 𝜎(𝑥) − 𝑥 ≠ 0 and is anisotropic}
Σ3 = {𝜎 ∈ O(𝑉) ∶ ∀ anisotropic 𝑥 ∈ 𝑉, 𝜎(𝑥) − 𝑥 ≠ 0 and is isotropic}

We will prove by induction on 𝑛 = dim𝑉. If 𝑛 = 1 then O(𝑉) = {±1}. Now suppose 𝑛 > 1.
Let 𝜎 ∈ O(𝑉).
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Case 1: If 𝜎 ∈ Σ1, then there exists an anisotropic vector 𝑥 ∈ 𝑉 such that 𝜎(𝑥) = 𝑥. Write
𝑉 = 𝐹𝑥 ⊕ (𝐹𝑥)⟂ as orthogonal sum of 𝜎-invariant subspace. By induction, 𝜎|(𝐹𝑥)⟂ = 𝜏1⋯𝜏𝑟
for some reflections 𝜏𝑖 where 𝑟 ≤ 𝑛 − 1. Define the extension 􏾪𝜏𝑖 of 𝜏𝑖 to 𝑉 by 􏾪𝜏𝑖(𝑥) = 𝑥 and
􏾪𝜏𝑖(𝑦) = 𝜏𝑖(𝑦) for 𝑦 ∈ (𝐹𝑥)⟂. Then 􏾪𝜏𝑖 is a reflection in 𝑉 and

𝜎 = 􏾪𝜏1⋯􏾪𝜏𝑟.

Case 2: If 𝜎 ∈ Σ2, then there exists an anisotropic vector 𝑥 ∈ 𝑉 such that 𝑣 = 𝜎(𝑥) − 𝑥
is non-zero and anisotropic. Then 𝑇𝑣(𝜎(𝑥)) = 𝑥, 𝑇𝑣 is the reflection along the hyperplane
perpendicular to the vector 𝑣. Case 1 gives 𝑇𝑣 ⋅ 𝜎 = 𝜏1⋯𝜏𝑟, where 𝑟 is at most 𝑛 − 1. Thus,

𝜎 = 𝑇𝑣 ⋅ 𝜏1⋯𝜏𝑟

is a product of at most 𝑛 reflections.

Case 3: Suppose 𝜎 ∈ Σ3. We first claim that 𝑛 ≥ 3 and for all 𝑥 ∈ 𝑉, 𝜎(𝑥) − 𝑥 is isotropic.
The first assertion could be checked by considering thematrix attached to the quadratic form
𝑄. To see the second assertion, we suppose 𝑥 ∈ 𝑉 is an isotropic vector and let 𝑦 ∈ 𝑉 be an
anisotropic vector such that 𝐵(𝑥, 𝑦) = 0 (the existence of 𝑦 is trivial). Now for all 𝑎 ∈ 𝐹 we
have 𝑄(𝑥 + 𝑎𝑦) ≠ 0 hence we obtain

𝑄(𝜎(𝑥 + 𝑎𝑦) − (𝑥 + 𝑎𝑦)) = 0, 𝑄(𝜎(𝑦) − 𝑦) = 0.

It follows that

𝑄(𝜎(𝑥) − 𝑥) + 2𝑎 ⋅ 𝐵(𝜎(𝑦) − 𝑦, 𝜎(𝑧) − 𝑧) = 0, for all 𝑎 ∈ 𝐹.

Plugging in 𝑎 = ±1 gives the desired result. Now, put𝑊 ∶= Im(1 − 𝜎) = (Id𝑉 − 𝜎)𝑉. Then the
result above implies that 𝑄|𝑊 ≡ 0 ⟹ 𝑊 ⊂ 𝑊⟂.

We now claim that 𝑄|𝑊⟂ and therefore𝑊⟂ ⊂ 𝑊⟂⟂ = 𝑊. If 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑊⟂ then we
have

𝐵(𝑥, 𝜎(𝑦) − 𝑦) = 𝐵(𝜎(𝑥), 𝜎(𝑦) − 𝑦) − 𝐵(𝜎(𝑥) − 𝑥, 𝜎(𝑦) − 𝑦) = 𝐵(𝜎(𝑥), 𝜎(𝑦) − 𝑦)
= 𝐵(𝜎(𝑥), 𝜎(𝑦)) − 𝐵(𝜎(𝑥), 𝑦) = 𝐵(𝑥, 𝑦) − 𝐵(𝜎(𝑥), 𝑦)
= −𝐵(𝑥 − 𝜎(𝑥), 𝜎(𝑦)) = 0.

The nondegeneracy of 𝐵 shows that 𝜎(𝑦) = 𝑦 for all 𝑦 ∈ 𝑊⟂. By assumption, 𝑦 must be
isotropic, that is 𝑄(𝑦) = 0 ⟹ 𝑄|𝑊⟂ ≡ 0. Hence, we now have𝑊 = 𝑊⟂. From Theorem 69
we know that there is a totally isotropic subspace𝑊′ ⊂ 𝑉 such that𝑊 ∩𝑊′ = {0} and that

𝑊 ⊕𝑊′ ≃ ℍ𝑚,

for 𝑚 = dim𝑊. Note that 𝑉 = 𝑊 ⊕𝑊′ since𝑊 = 𝑊⟂. Moreover, we have 𝜎|𝑊 = Id𝑊 .

We now finally claim that det 𝜎 = 1. We observe that: for 𝑥 ∈ 𝑊 and 𝑦 ∈ 𝑊′, we have

𝐵(𝑥, 𝜎(𝑦) − 𝑦) = 𝐵(𝑥, 𝜎(𝑦)) − 𝐵(𝑥, 𝑦) = 𝐵(𝑥, 𝜎(𝑦)) − 𝐵(𝜎(𝑥), 𝜎(𝑦)) = 0.

Thus we conclude that 𝜎(𝑦) − 𝑦 ∈ 𝑊. Let ℬ = {𝑤1, … , 𝑤𝑚} and ℬ′ = {𝑤′1, … , 𝑤′𝑚} be bases of𝑊
and𝑊′, respectively.
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Then,

[𝜎]ℬ⊔ℬ′ =
⎛
⎜⎜⎜⎝
𝐼𝑚 ∗
0 𝐼𝑚

⎞
⎟⎟⎟⎠ .

This shows that det 𝜎 = 1. Let 𝜏 be any reflection. Then 𝜏 ⋅ 𝜎 ∈ Σ1 ⊔ Σ2, since det 𝜏 = −1 for
any reflection 𝜏. Thus, 𝜏 ⋅ 𝜎 is a product of at most 𝑛 reflections. Thus, we conclude that 𝜎 is
a product of at most 𝑛 + 1 reflections. However, note that det 𝜎 = 1 and det 𝜏 = −1 for every
reflection 𝜏, hence 𝜎 is not a product of 𝑛 + 1 = 2𝑚 + 1 reflections. This completes the proof.

Remark. In the 2016 video, due to the limited time, only the general steps of the proof are
sketched, and the complete proof is not given. Here, I also refer to this article [1] for the
proof.

3 Applications of Linear Algebra
In this section, we will introduce some applications of linear algebra.

3.1 The number of common zeros of two polynomials
First, we look at the following question. Let 𝑓(𝑥), 𝑔(𝑥) be two polynomials.

What is the size of #{𝑎 ∈ ℂ ∶ 𝑓(𝑎) = 𝑔(𝑎) = 0}. (Counted with multiplicities)

The solution to this question is answered by ÉTIENNE BÉZOUT, a French mathematician.
Actually, I am not pretty sure whether the result is discovered by him, but to prove the re-
sult, we have to introduce a matrix called Bézoutian. We first define 𝑣(𝑓, 𝑔) to simplify our
notation.

Definition 74. Let 𝑓, 𝑔 ∈ ℂ[𝑥]. Define

𝑣(𝑓, 𝑔) = the common roots of 𝑓(𝑥) and 𝑔(𝑥) counted with multiplicities
= deg 􏿴gcd 􏿴𝑓(𝑥), 𝑔(𝑥)􏿷􏿷 .

Definition 75 (Bézoutian or Bézout matrix). Let 𝑓, 𝑔 ∈ ℂ[𝑥] be two polynomials and let 𝑛 =
max{deg 𝑓,deg 𝑔}. Then the Bézoutian 𝐵𝑓,𝑔 = (𝑏𝑖𝑗) ∈ 𝑀𝑛(ℂ) is a matrix such that

𝑓(𝑥)𝑔(𝑦) − 𝑓(𝑦)𝑔(𝑥)
𝑥 − 𝑦 =

𝑛−1
􏾜
𝑖=0

𝑛−1
􏾜
𝑗=0
𝑥𝑖 ⋅ 𝑏𝑖𝑗 ⋅ 𝑦𝑗 = 􏿴1 𝑥 ⋯ 𝑥𝑛−1􏿷 ⋅ 𝐵𝑓,𝑔 ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑦
⋮

𝑦𝑛−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If we define

𝑉𝑛(𝑥) = 􏿴1 𝑥 ⋯ 𝑥𝑛−1􏿷
t
,

then we have
𝑓(𝑥)𝑔(𝑦) − 𝑓(𝑦)𝑔(𝑥)

𝑥 − 𝑦 = 𝑉𝑛(𝑥)
t ⋅ 𝐵𝑓,𝑔 ⋅ 𝑉𝑛(𝑦).
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Theorem 76. Let 𝑓, 𝑔 ∈ ℂ[𝑥]. We have

𝑣(𝑓, 𝑔) = nullity(𝐵𝑓,𝑔).

Before proving this theorem, we shall introduce some notations, some lemmas and an
important theorem.

Definition 77. Given

𝑓(𝑥) =
𝑛
􏾜
𝑖=0
𝑎𝑖𝑥𝑖 ∈ ℂ[𝑥] and 𝑔(𝑥) =

𝑛
􏾜
𝑖=0
𝑏𝑖𝑥𝑖 ∈ ℂ[𝑥].

Define the following matrices associated with 𝑓(𝑥) (and possibly 𝑔(𝑥)).

1. The Hankel matrix of 𝑓(𝑥).
We usually write 𝐻𝑓 = (ℎ𝑖𝑗) ∈ 𝑀𝑛(ℂ) to denote it. The entries are defined by:

ℎ𝑖𝑗 =

⎧⎪⎪⎨
⎪⎪⎩
𝑎𝑖+𝑗−1 , if 𝑖 + 𝑗 − 1 < 𝑛
0 , otherwise

.

That is,

𝐻𝑓 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1 𝑎2 ⋯ ⋯ 𝑎𝑛
𝑎2 ⋱ ⋱ 𝑎𝑛
⋮ ⋱ 𝑎𝑛
⋮ 𝑎𝑛
𝑎𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ 𝑀𝑛(ℂ).

2. The Toeplitz matrix of 𝑓(𝑥).
We usually write 𝑇𝑓 = (𝑡𝑖𝑗) ∈ 𝑀𝑛(ℂ) to denote it. The entries are defined by:

𝑡𝑖𝑗 =

⎧⎪⎪⎨
⎪⎪⎩
𝑎𝑗−𝑖 , if 𝑖 ≤ 𝑗
0 , otherwise

.

That is

𝑇𝑓 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎0 𝑎1 ⋯ 𝑎𝑛−2 𝑎𝑛−1
𝑎0 𝑎1 ⋯ 𝑎𝑛−2

⋱ ⋱ ⋮
𝑎0 𝑎1

𝑎0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ 𝑀𝑛 ∈ ℂ.

3. The anti-diagonal matrix.
We usually write 𝑍𝑛 = (𝑧𝑖𝑗) ∈ 𝑀𝑛(ℂ) to denote it. The entries are defined by

𝑧𝑖𝑗 =

⎧⎪⎪⎨
⎪⎪⎩
1 , if 𝑖 + 𝑗 = 𝑛 + 1
0 , otherwise

.
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That is,

𝑍𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

. .
.

. .
.

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ 𝑀𝑛ℂ.

4. The resultant of 𝑓 and 𝑔.
Let 𝑛 = max{deg 𝑓,deg 𝑔}. We write 𝑅𝑓,𝑔 = (𝑟𝑖𝑗) ∈ 𝑀2𝑛(ℂ) to denote the resultant. The
entries are defined by

𝑟𝑖𝑗 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑎𝑗−𝑖 , if 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 − 𝑖 ≤ 𝑛
𝑏𝑗−𝑖 , if 𝑖 > 𝑛 and 0 ≤ 𝑗 − 𝑖 ≤ 𝑛
0 , otherwise

.

That is,

𝑅𝑓,𝑔 ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎0 𝑎1 ⋯ 𝑎𝑛−1 𝑎𝑛
𝑎0 𝑎1 ⋯ 𝑎𝑛−1 𝑎𝑛

⋱ ⋱ ⋱ ⋱ ⋱
𝑎0 𝑎1 ⋯ 𝑎𝑛−1 𝑎𝑛

𝑏0 𝑏1 ⋯ 𝑏𝑛−1 𝑏𝑛
𝑏0 𝑏1 ⋯ 𝑏𝑛−1 𝑏𝑛

⋱ ⋱ ⋱ ⋱ ⋱
𝑏0 𝑏1 ⋯ 𝑏𝑛−1 𝑏𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ 𝑀2𝑛(ℂ).

Remark. In all the above matrices, all “blank” entries represent 0.

From the above definitions, it is easy to see

𝑍 ⋅ 𝐻𝑓 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎𝑛
𝑎𝑛−1 𝑎𝑛
⋮ ⋱ ⋱
𝑎1 ⋯ 𝑎𝑛−1 𝑎𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; 𝑍 ⋅ 𝑇𝑓 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎0
𝑎0 𝑎1

. .
.

. .
. ⋮

𝑎0 𝑎1 ⋯ 𝑎𝑛−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, we have

𝑅𝑓,𝑔 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑇𝑓 𝑍 ⋅ 𝐻𝑓

𝑇𝑔 𝑍 ⋅ 𝐻𝑔⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Theorem 78. Let 𝑓, 𝑔 ∈ ℂ[𝑥]. We have

𝑣(𝑓, 𝑔) = nullity(𝑅𝑓,𝑔).

Proof. Let 𝑛 ∶= max{deg 𝑓,deg 𝑔} and let 𝑃𝑘 be the set of all complex polynomials with degree
less than 𝑘. In other words,

𝑃𝑘 ∶= {𝑝 ∈ ℂ[𝑥] ∶ deg 𝑝 < 𝑘}.
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Consider a linear transformation 𝑇 defined by:

𝑇 ∶ 𝑃𝑛 ⊕ 𝑃𝑛 → 𝑃2𝑛
(𝑢, 𝑣) ↦ 𝑢 ⋅ 𝑓 + 𝑣 ⋅ 𝑔

.

Suppose 𝑑(𝑥) = gcd 􏿴𝑓(𝑥), 𝑔(𝑥)􏿷, and we assume that 𝑓(𝑥) = ℎ(𝑥) ⋅ 𝑑(𝑥), 𝑔(𝑥) = 𝑘(𝑥) ⋅ 𝑑(𝑥), and
that gcd (ℎ(𝑥), 𝑘(𝑥)) = 1. Then,

ker𝑇 = {(𝑢, 𝑣) ∈ 𝑃𝑛 × 𝑃𝑛 ∶ 𝑢 ⋅ 𝑓 + 𝑣 ⋅ 𝑔 = 0}
= {(𝑢, 𝑣) ∈ 𝑃𝑛 × 𝑃𝑛 ∶ 𝑢 ⋅ ℎ + 𝑣 ⋅ 𝑘 = 0}
= {(𝑘 ⋅ 𝛼, −ℎ ⋅ 𝛼) ∶ 𝛼 ∈ ℂ[𝑥]} (∵ gcd(𝑘, ℎ) = 1.)

However, note the degree of 𝛼 is less than deg 𝑑(𝑥). This indicates that

dimker𝑇 = deg 𝑑(𝑥) = 𝑣(𝑓, 𝑔).

It suffices to show that dimker𝑇 = nullity(𝑅𝑓,𝑔). It follows from the fact that

[𝑇]ℬ,𝒜 = 𝑅𝑓,𝑔
t,

where ℬ is the standard basis of 𝑃𝑛 ⊕ 𝑃𝑛 and𝒜 is the standard basis of 𝑃2𝑛.

To prove Theorem 76, it remains to find the relation between 𝑅𝑓,𝑔 and 𝐵𝑓,𝑔.

Lemma 10. Let 𝑓, 𝑔 ∈ ℂ[𝑥] and let 𝑛 = max{deg 𝑓,deg 𝑔}. 𝐻𝑓, 𝑇𝑓 and 𝑍 are defined as above.

1. 𝑇𝑓 and 𝑇𝑔 commute, namely, 𝑇𝑓 ⋅ 𝑇𝑔 = 𝑇𝑔 ⋅ 𝑇𝑓.

2. 𝑋t = 𝑍 ⋅ 𝑋 ⋅ 𝑍, for all 𝑋 ∈ 𝑀𝑛(ℂ).

3. 𝐻𝑓 ⋅ 𝑍 ⋅ 𝐻𝑔 = 𝐻𝑔 ⋅ 𝑍 ⋅ 𝐻𝑓.

The proof is omitted since it can be done by some simple calculations.

Lemma 11. Let 𝑓, 𝑔 ∈ ℂ[𝑥]. Then, 𝐵𝑓,𝑔 = 𝐻𝑓 ⋅ 𝑇𝑔 − 𝐻𝑔 ⋅ 𝑇𝑓.

Proof. We write 𝑅 = 𝑅𝑓,𝑔 and 𝐵 = 𝐵𝑓,𝑔. It is easy to see that
𝑥𝑛 − 𝑦𝑛
𝑥 − 𝑦 = 𝑉𝑛(𝑥)

t ⋅ 𝑍 ⋅ 𝑉𝑛(𝑦).

Thus, we have

(𝑥𝑛 − 𝑦𝑛) ⋅ 𝑓(𝑥)𝑔(𝑦) − 𝑓(𝑦)𝑔(𝑥)𝑥 − 𝑦

=𝑉𝑛(𝑥)
t ⋅ 􏿵𝑍 ⋅ 􏿴𝑓(𝑥)𝑔(𝑦) − 𝑓(𝑦)𝑔(𝑥)􏿷􏿸 ⋅ 𝑉𝑛(𝑦)

=
⎛
⎜⎜⎜⎝
𝑉𝑛(𝑥) ⋅ 𝑓(𝑥)
𝑉𝑛(𝑥) ⋅ 𝑔(𝑥)

⎞
⎟⎟⎟⎠
t

⋅
⎛
⎜⎜⎜⎝
0 𝑍
−𝑍 0

⎞
⎟⎟⎟⎠ ⋅
⎛
⎜⎜⎜⎝
𝑓(𝑦) ⋅ 𝑉𝑛(𝑦)
𝑔(𝑦) ⋅ 𝑉𝑛(𝑦)

⎞
⎟⎟⎟⎠

=𝑉2𝑛(𝑥)
t ⋅ 𝑅t ⋅

⎛
⎜⎜⎜⎝
0 𝑍
−𝑍 0

⎞
⎟⎟⎟⎠ ⋅ 𝑅 ⋅ 𝑉2𝑛(𝑦) (by direct computation.)
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On the other hand, we have the left hand side is equal to

(𝑥𝑛 − 𝑦𝑛) ⋅ 𝑉𝑛(𝑥)
t ⋅ 𝐵𝑓,𝑔 ⋅ 𝑉𝑛(𝑦)

=𝑉𝑛(𝑥)
t ⋅ 􏿴𝑥𝑛 ⋅ 𝐵𝑓,𝑔􏿷 ⋅ 𝑉𝑛(𝑦) − 𝑉𝑛(𝑥)

t ⋅ 􏿴𝐵𝑓,𝑔 ⋅ 𝑦𝑛􏿷 ⋅ 𝑉𝑛(𝑦)

=𝑉2𝑛(𝑥)
t ⋅
⎛
⎜⎜⎜⎝
0 0
𝐵 0

⎞
⎟⎟⎟⎠ ⋅ 𝑉2𝑛(𝑦) − 𝑉2𝑛(𝑥)

t ⋅
⎛
⎜⎜⎜⎝
0 𝐵
0 0

⎞
⎟⎟⎟⎠ ⋅ 𝑉2𝑛(𝑦)

=𝑉2𝑛(𝑥)
t ⋅
⎛
⎜⎜⎜⎝
0 −𝐵
𝐵 0

⎞
⎟⎟⎟⎠ ⋅ 𝑉2𝑛(𝑦).

Therefore, we conclude that
⎛
⎜⎜⎜⎝
0 −𝐵
𝐵 0

⎞
⎟⎟⎟⎠ = 𝑅t ⋅

⎛
⎜⎜⎜⎝
0 𝑍
−𝑍 0

⎞
⎟⎟⎟⎠ ⋅ 𝑅

⟹
⎛
⎜⎜⎜⎝
0 −𝐵
𝐵 0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
𝑇𝑓

t 𝑇𝑔
t

𝐻𝑓
t ⋅ 𝑍 𝐻𝑔

t ⋅ 𝑍

⎞
⎟⎟⎟⎠ ⋅
⎛
⎜⎜⎜⎝
0 𝑍
−𝑍 0

⎞
⎟⎟⎟⎠ ⋅
⎛
⎜⎜⎜⎝
𝑇𝑓 𝑍 ⋅ 𝐻𝑓
𝑇𝑔 𝑍 ⋅ 𝐻𝑔

⎞
⎟⎟⎟⎠

⟹
⎛
⎜⎜⎜⎝
0 −𝐵
𝐵 0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
𝑍 ⋅ 𝑇𝑓 ⋅ 𝑍 𝑍 ⋅ 𝑇𝑔 ⋅ 𝑍
𝐻𝑓 ⋅ 𝑍 𝐻𝑔 ⋅ 𝑍

⎞
⎟⎟⎟⎠ ⋅
⎛
⎜⎜⎜⎝
𝑍 ⋅ 𝑇𝑔 𝐻𝑔
−𝑍 ⋅ 𝑇𝑓 −𝐻𝑓

⎞
⎟⎟⎟⎠

⟹
⎛
⎜⎜⎜⎝
0 −𝐵
𝐵 0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
0 ∗
𝑋 0

⎞
⎟⎟⎟⎠ , where 𝑋 = 𝐻𝑓 ⋅ 𝑇𝑔 − 𝐻𝑔 ⋅ 𝑇𝑓

⟹ 𝐵 = 𝑋 = 𝐻𝑓 ⋅ 𝑇𝑔 − 𝐻𝑔 ⋅ 𝑇𝑓.

The above deductions have used Lemma 10.

Now, we can start proving Theorem 76.
Proof of Theorem 76. It suffices to show that nullity(𝑅𝑓,𝑔) = nullity(𝐵𝑓,𝑔). Without loss of
generality, we assume that deg 𝑓 ≥ deg 𝑔. Hence, 𝑎𝑛 ≠ 0 if 𝑛 = max{deg 𝑓,deg 𝑔}. Consider

⎛
⎜⎜⎜⎝
𝐼𝑛 𝑂𝑛
𝑇𝑓 𝑍𝐻𝑓

⎞
⎟⎟⎟⎠ ⋅ 𝑅 =

⎛
⎜⎜⎜⎝
𝐼𝑛 𝑂𝑛
𝑇𝑓 𝑍𝐻𝑓

⎞
⎟⎟⎟⎠ ⋅
⎛
⎜⎜⎜⎝
𝑇𝑓 𝑍𝐻𝑓
𝑇𝑔 𝑍𝐻𝑔

⎞
⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎝

𝑇𝑓 𝑍𝐻𝑓
𝑇2𝑓 + 𝑍𝐻𝑓𝑇𝑔 𝑇𝑓𝑍𝐻𝑓 + 𝑍𝐻𝑓𝑍𝐻𝑔

⎞
⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎝

𝑇𝑓 𝑍𝐻𝑓
𝑍𝐵 + (𝑍𝐻𝑔 + 𝑇𝑓)𝑇𝑓 (𝑇𝑓 + 𝑍𝐻𝑔)𝑍𝐻𝑓

⎞
⎟⎟⎟⎠

(Recall that 𝐵 = 𝐻𝑓𝑇𝑔 − 𝐻𝑔𝑇𝑓 and Lemma 10)

=
⎛
⎜⎜⎜⎝
𝑂𝑛 𝐼𝑛
𝑍𝐵 𝑇𝑓 + 𝑍𝐻𝑔

⎞
⎟⎟⎟⎠ ⋅
⎛
⎜⎜⎜⎝
𝐼𝑛 𝑂𝑛
𝑇𝑓 𝑍𝐻𝑓

⎞
⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎝
𝑂𝑛 𝐼𝑛
𝑍 𝑇𝑓 + 𝑍𝐻𝑔

⎞
⎟⎟⎟⎠ ⋅
⎛
⎜⎜⎜⎝
𝐵 𝑂𝑛
𝑂𝑛 𝐼𝑛

⎞
⎟⎟⎟⎠ ⋅
⎛
⎜⎜⎜⎝
𝐼𝑛 𝑂𝑛
𝑇𝑓 𝑍𝐻𝑓

⎞
⎟⎟⎟⎠ .

Note that

det
⎛
⎜⎜⎜⎝
𝐼𝑛 𝑂𝑛
𝑇𝑓 𝑍𝐻𝑓

⎞
⎟⎟⎟⎠ = det(𝐼𝑛) ⋅ det(𝑍 ⋅ 𝐻𝑓) = det(𝑍) ⋅ det(𝐻𝑓)

= (−1)𝑛 ⋅ det(𝐻𝑓
t) = (−1)𝑛 ⋅ (𝑎𝑛)𝑛 ≠ 0
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and that

det
⎛
⎜⎜⎜⎝
𝑂𝑛 𝐼𝑛
𝑍 𝑇𝑓 + 𝑍𝐻𝑔

⎞
⎟⎟⎟⎠ = det

⎛
⎜⎜⎜⎝
𝑂𝑛 𝐼𝑛
𝑍 𝑇𝑓 + 𝑍𝐻𝑔

⎞
⎟⎟⎟⎠

= det
⎛
⎜⎜⎜⎝
𝑂𝑛 𝐼𝑛
𝑍 𝑇𝑓

⎞
⎟⎟⎟⎠ ⋅ det

⎛
⎜⎜⎜⎝
𝐼𝑛 𝐻𝑔
𝑂𝑛 𝐼𝑛

⎞
⎟⎟⎟⎠

= det(𝑇𝑓) ⋅ det(𝐼𝑛𝑇−1𝑓 𝑍) ⋅ 1 ≠ 0

Therefore, we conclude that

nullity(𝐵) = nullity
⎛
⎜⎜⎜⎝
𝐵 𝑂𝑛
𝑂𝑛 𝐼𝑛

⎞
⎟⎟⎟⎠ = nullity(𝑅𝑓,𝑔).

□
Theorem 76 together with Theorem 78 are called Jacobi-Darboux Theorem.

Remark. If we are given two polynomials 𝑝, 𝑞 ∈ ℂ[𝑥, 𝑦] and we are asked to find all solutions
to the equation

𝑝(𝑥, 𝑦) = 0, 𝑞(𝑥, 𝑦) = 0.

We can use the following method. Fix 𝑦 and we obtain two polynomials 𝑝𝑦 and 𝑞𝑦 with
coefficients in ℂ. Then, (𝑥0, 𝑦0) is a solution if det(𝐵𝑝𝑦0 ,𝑞𝑦0 ) = 0.

3.2 Markov chain and the Perron-Frobenius Theorem
We first look at the following question:

Suppose there are only two towns in the NTU COUNTRY, called the MATH
town and the CSIE town. Suppose in every year, there are 𝑠% people from
MATHmoving to CSIE; and 𝑡% people fromCSIEmoving toMATH. Assume
that there are no people died and born and no people moving out of the NTU
COUNTRY. Then, we want to ask whether the population in these two towns
will become steady.

Let 𝑆 be the total population of the NTU COUNTRY, and let 𝑝𝑘 and 𝑞𝑘 be the percentage
of the total population in two towns MATH and CSIE, respectively, at the 𝑘-th year. Write
𝑣𝑘 = (𝑝𝑘, 𝑞𝑘)

t. Then, we have

𝑣𝑘+1 =
⎛
⎜⎜⎜⎝
1 − 𝑠% 𝑡%
𝑠% 1 − 𝑡%

⎞
⎟⎟⎟⎠ 𝑣𝑘

Define

𝑀 ∶=
⎛
⎜⎜⎜⎝
1 − 𝑠% 𝑡%
𝑠% 1 − 𝑡%

⎞
⎟⎟⎟⎠ ,

then we wonder whether the limit

lim
𝑘→∞

𝑣𝑘 = lim
𝑘→∞

𝑀𝑣𝑘

48



exists? Above discussions give us the motivation to study Markov chain. The next two defi-
nitions are helpful for us rephrasing the problem.

Definition 79 (Steady state). Given a matrix 𝑀 ∈ 𝑀𝑛(ℝ), a steady state 𝑣 ∈ ℝ𝑛 is an eigen-
vector of𝑀with eigenvalue 1, namely,𝑀 ⋅ 𝑣 = 𝑣.

Definition 80 (Stochastic matrix). Suppose 𝑀 ∈ 𝑀𝑛(ℝ). 𝑀 = (𝑚𝑖𝑗) is called a stochastic
matrix if all its entries are nonnegative and

𝑛
􏾜
𝑖=1
𝑚𝑖𝑗 = 1,

for all 𝑗 ∈ [1, 𝑛].

We restate the problem as “Is the steady state of a stochastic matrix exists and is unique up to
a scalar?” In general, the answer is “no”. For instance, let𝑀 = 𝐼𝑛, then every state is a steady
state. So, our goal is to find the sufficient condition when the steady state is unique.

Definition 81 (Positive matrix and non-negative matrix). Given a matrix𝑀 ∈ 𝑀𝑛(ℝ).

1. 𝑀 is positive (non-negative) if all its entries are positive (non-negative). We oftenwrite
𝑀 > 0 or𝑀 ≥ 0.

2. 𝑀 is regular if𝑀 is non-negative and𝑀𝑘 is positive for some 𝑘 ∈ ℕ. (The terminology
“Regular” is sometimes confusing.)

Theorem 82. Let 𝑀 ∈ 𝑀𝑛(ℝ) be a stochastic matrix. If 𝑀 is regular then a steady state of 𝑀 is
unique up to a scalar. In other words, dimker(𝑀 − 𝐼𝑛) = 1.

In fact, there is a more stronger result, however we shall introduce some other termi-
nologies first.

Definition 83 (Spectral radius). Let 𝐴 ∈ 𝑀𝑛(ℂ) and let 𝜆1, 𝜆2, … , 𝜆𝑠 be all the eigenvalues of
𝐴 (roots of the characteristic polynomial). The spectral radius of 𝐴 is defined as

𝜌(𝐴) ∶= max
1≤𝑖≤𝑠

|𝜆𝑖| .

Hence, we have 𝜌(𝐴) ≥ 0.

The stronger result mentioned above is the next theorem, which is proved by OSKAR
PERRON (1907) and GEORG FROBENIUS (1912).

Theorem 84 (Perron-Frobenius Theorem). Let𝐴 ∈ 𝑀𝑛(ℝ) be a regular matrix. Then, there exists
a unique (up to a scalar) eigenvector 𝑣 ∈ ℝ𝑛 with eigenvalue 𝜌(𝐴).

Note that we does not assume 𝜌(𝐴) is an eigenvalue. Therefore, this theorem is pretty
strong. Since it requires a lot of work to prove Theorem 84, we shall prove some theorems
and lemmas first, instead.
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Theorem 85 (Gelfond’s formula). Let 𝐴 ∈ 𝑀𝑛(ℂ). Then,

𝜌(𝐴) = lim
𝑘→∞

􏿎𝐴𝑘􏿎
1/𝑘
.

Although this theorem is regard as a lemma of Theorem 84, we still need to decompose
it into some small problems.

Lemma 12. Let 𝐴 and 𝐵 be two similar complex matrices. That is, there exists an invertible
matrix 𝑃 ∈ 𝑀𝑛(ℂ) such that

𝐴 = 𝑃−1𝐵𝑃.

Then,

lim
𝑘→∞

􏿎𝐴𝑘􏿎
1/𝑘
= lim
𝑛→∞

􏿎𝐵𝑘􏿎
1/𝑘
,

provided that lim 􏿎𝐴𝑘􏿎
1/𝑘

exists.

Proof. Let 𝑡 = ‖𝑃‖ ⋅ 􏿎𝑃−1􏿎 ≥ 􏿎𝑃 ⋅ 𝑃−1􏿎 = 1. Then,

􏿎𝐴𝑘􏿎 = 􏿎𝑃−1 ⋅ 𝐵𝑘 ⋅ 𝑃􏿎 ≤ 􏿎𝑃−1􏿎 ⋅ 􏿎𝐵𝑘􏿎 ⋅ ‖𝑃‖ = 𝑡 ⋅ 􏿎𝐵𝑘􏿎 .

Similarly, we have

􏿎𝐵𝑘􏿎 ≤ 𝑡 ⋅ 􏿎𝐴𝑘􏿎 .

We conclude

𝑡−1/𝑘 􏿎𝐴𝑘􏿎
1/𝑘
≤ 􏿎𝐵𝑘􏿎

1/𝑘
≤ 𝑡1/𝑘 􏿎𝐴𝑘􏿎

1/𝑘
.

Taking the limit 𝑘 → ∞, we obtain lim 􏿎𝐴𝑘􏿎
1/𝑘
= lim 􏿎𝐵𝑘􏿎

1/𝑘
.

Proof of Theorem 85. If 𝑥 is an eigenvector of eigenvalue 𝜆, then

|𝐴𝑘𝑥| = |𝜆|𝑘 ⋅ |𝑥| ⟹ 􏿎𝐴𝑘􏿎 ≥ |𝜆|𝑘

⟹ 􏿎𝐴𝑘􏿎
1/𝑘
≥ |𝜆| .

We find 􏿎𝐴𝑘􏿎
1/𝑘
≥ 𝜌(𝐴) for all 𝑘 ∈ ℕ. It remains to prove that lim 􏿎𝐴𝑘􏿎

1/𝑘
exists and

𝜌(𝐴) ≥ lim
𝑘→∞

􏿎𝐴𝑘􏿎
1/𝑘
.

From what we have learnt in the theory of Jordan forms and Lemma 12, we just need to
consider the case when 𝐴 is of Jordan form. We first consider the case when 𝐴 is a Jordan
block 𝐽𝜆, that is,

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆 1
𝜆 1

⋱ ⋱
⋱ 1

𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝜆 ⋅ 𝐼𝑛 + 𝑁 ∈ 𝑀𝑛(ℂ),

50



where 𝑁 = 𝐽0. Then,

𝐴𝑘 = (𝜆 ⋅ 𝐼𝑛 + 𝑁)𝑘 =
𝑘
􏾜
𝑖=0
􏿶
𝑘
𝑖􏿹
𝜆𝑘−𝑖𝑁𝑖 =

𝑛
􏾜
𝑖=0
􏿶
𝑘
𝑖􏿹
𝜆𝑘−𝑖𝑁𝑖 (if 𝑘 ≥ 𝑛)

If we assume 𝑘 ≥ 𝑛, we then have

􏿎𝐴𝑘􏿎 =
􏿑
􏿑

𝑛
􏾜
𝑖=0
􏿶
𝑘
𝑖􏿹
𝜆𝑘−𝑖𝑁𝑖􏿑

􏿑
≤

𝑛
􏾜
𝑖=0
􏿶
𝑘
𝑖􏿹
|𝜆|𝑘−𝑖 = |𝜆|𝑘 ⋅ 𝑝(𝑘),

where

𝑝(𝑘) =
𝑛
􏾜
𝑖=0
|𝜆|−𝑖 􏿶

𝑘
𝑖􏿹

is a polynomial in 𝑘. Thus,

􏿎𝐴𝑘􏿎
1/𝑘
≤ |𝜆| ⋅ 𝑝(𝑘)1/𝑘 → |𝜆| .

Estimations above show that the theorem is true when 𝐴 is a Jordan block. Now, we claim
that if

𝐴 = 𝐵 ⊕ 𝐶 =
⎛
⎜⎜⎜⎝
𝐵

𝐶

⎞
⎟⎟⎟⎠ ,

then ‖𝐴‖ = max{‖𝐵‖ , ‖𝐶‖}. This claimproves the theorem, since 􏿎𝐴𝑘􏿎
1/𝑘

converge tomax1≤𝑖≤𝑠{|𝜆𝑖|}
when

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐽1
𝐽2

⋱
𝐽𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐽𝑖 are all Jordan blocks.

We now start proving the claim. Let 𝐵 ∈ 𝑀𝑝(ℂ) and 𝐶 ∈ 𝑀𝑞(ℂ) and let 𝑎 = max{‖𝐵‖ , ‖𝐶‖}.
Observe that for all 𝑥 ∈ ℂ𝑝 and 𝑦 ∈ ℂ𝑞, we have

􏵶
⎛
⎜⎜⎜⎝
𝐵 0
0 𝐶

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎠􏵶 = √|𝐵𝑥|

2 + |𝐶𝑦|
2
≤ √𝑎

2 ⋅ (|𝑥| + |𝑦|).

Hence, we conclude that

􏿑
􏿑

⎛
⎜⎜⎜⎝
𝐵 0
0 𝐶

⎞
⎟⎟⎟⎠
􏿑
􏿑
≤ 𝑎.

On the other hand, there exist 𝑥0 ∈ ℂ𝑝 and 𝑦0 ∈ ℂ𝑞 such that

|𝐵𝑥0| = ‖𝐵‖ ⋅ |𝑥0| , |𝐶𝑦0| = ‖𝐶‖ ⋅ |𝑦0| .

Then, we have

􏵶
⎛
⎜⎜⎜⎝
𝐵 0
0 𝐶

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
𝑥0
0

⎞
⎟⎟⎟⎠􏵶 ≤ ‖𝐵‖ ⋅ 􏵶

⎛
⎜⎜⎜⎝
𝑥0
0

⎞
⎟⎟⎟⎠􏵶 , 􏵶

⎛
⎜⎜⎜⎝
𝐵 0
0 𝐶

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
0
𝑦0

⎞
⎟⎟⎟⎠􏵶 ≤ ‖𝐶‖ ⋅ 􏵶

⎛
⎜⎜⎜⎝
0
𝑦0

⎞
⎟⎟⎟⎠􏵶 ,

51



this proves the theorem. □

Theorem 86. Let 𝐴 ∈ 𝑀𝑛(ℝ) be a positive real matrix. The following statements are true.

1. There is a positive vector 𝑢 ∈ ℝ𝑛
>0 such that 𝐴 ⋅ 𝑢 = 𝜌(𝐴)𝑢.

2. If 𝑣 ∈ ℂ𝑛 is an eigenvector of 𝐴 with eigenvalue 𝜆 satisfying |𝜆| = 𝜌(𝐴), then 𝜆 = 𝜌(𝐴).

3. The algebraic multiplicities of 𝜌(𝐴) is 1.

Proof. Let 𝑣 ∈ ℂ𝑛 be an eigenvector of 𝐴 with eigenvalue 𝜆 satisfying |𝜆| = 𝜌(𝐴). Write
𝑣 = 􏿴𝑣1 𝑣2 … 𝑣𝑛􏿷

t
∈ ℂ𝑛 and let𝑤 = 􏿴|𝑣1| |𝑣2| … |𝑣𝑛|􏿷

t
∈ ℝ𝑛

≥0. We claim that𝐴⋅𝑤 = 𝜌(𝐴)⋅𝑤.
Note that

(𝐴𝑤)𝑖 =
𝑛
􏾜
𝑗=1
𝑎𝑖𝑗𝑤𝑗 =

𝑛
􏾜
𝑗=1
𝑎𝑖𝑗 |𝑣𝑗| ≥

|
|

𝑛
􏾜
𝑗=1
𝑎𝑖𝑗𝑣𝑗

|
|
= |(𝐴𝑣)𝑖| = |𝜆𝑣𝑖| = 𝜌(𝐴) |𝑣𝑖| = 𝜌(𝐴)𝑤𝑖.

If 𝐴𝑤 ≠ 𝜌(𝐴)𝑤, then 𝐴 ⋅ 𝐴𝑤 > 𝐴 ⋅ 𝜌(𝐴)𝑤, that is, all components of 𝐴 ⋅ 𝐴𝑤 are strictly greater
than those of 𝐴 ⋅ 𝜌(𝐴)𝑤. It is possible to choose 𝜖 > 0 such that

𝐴 ⋅ 𝐴𝑤 ≥ (1 + 𝜖)𝐴 ⋅ 𝜌(𝐴)𝑤.

By induction, we get:

𝐴𝑘+1𝑤 ≥ 􏿴(1 + 𝜖)𝜌(𝐴)􏿷
𝑘
⋅ 𝐴𝑤, for all 𝑘 ∈ ℕ.

This implies that

􏿎𝐴𝑘􏿎 ≥
|𝐴𝑘 ⋅ (𝐴𝑤)|
|𝐴𝑤| ≥ 􏿴(1 + 𝜖)𝜌(𝐴)􏿷

𝑘
⟹ 􏿎𝐴𝑘􏿎

1/𝑘
≥ (1 + 𝜖)𝜌(𝐴),

contradicting the Gelfond’s formula (Theorem 85). Hence, 𝐴𝑤 = 𝜌(𝐴)𝑤. However, from
the definition of 𝑤, we have 𝑤 ≥ 0, therefore we conclude that 𝑤 > 0. This proves the first
assertion. To see the second statement, observe that

𝑛
􏾜
𝑗=1
|𝑎𝑖𝑗𝑣𝑗| =

𝑛
􏾜
𝑗=1
𝑎𝑖𝑗 |𝑣𝑗| = |𝜆𝑣𝑖| =

|
|

𝑛
􏾜
𝑗=1
𝑎𝑖𝑗𝑣𝑗

|
|
, for all 𝑖.

This implies all 𝑣𝑖 have the same argument (principal value), that is, arg(𝑣𝑖) are the same.
Here we have used a cool fact about the complex number.

Let 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ ℂ ⧵ {0}. Then

|𝑐1 + 𝑐2 +⋯+ 𝑐𝑛| = |𝑐1| + |𝑐2| + ⋯ + |𝑐𝑛|

implies 𝑐1, 𝑐2, … , 𝑐𝑛 have the same principal values (arguments).

Since all 𝑣𝑖 have the same principle value, we may assume that 𝑣𝑖 = 𝑟𝑖 ⋅exp (𝑖𝜃) (𝑟𝑖 ∈ ℝ≥0)
for all 1 ≤ 𝑖 ≤ 𝑛.
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Thus, we have

𝜆 ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟1 exp 𝑖𝜃
𝑟2 exp 𝑖𝜃

⋮
𝑟𝑛 exp 𝑖𝜃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 ⋱ ⋮
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ ⋯ 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟1 exp 𝑖𝜃
𝑟2 exp 𝑖𝜃

⋮
𝑟𝑛 exp 𝑖𝜃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= exp (𝑖𝜃)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑𝑎1𝑗𝑟𝑗
∑𝑎2𝑗𝑟𝑗
⋮

∑ 𝑎𝑛𝑗𝑟𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⟹ 𝜆 ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟1
𝑟2
⋮
𝑟𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝐴 ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟1
𝑟2
⋮
𝑟𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑𝑎1𝑗𝑟𝑗
∑𝑎2𝑗𝑟𝑗
⋮

∑ 𝑎𝑛𝑗𝑟𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a real matrix.

Hence, this shows that 𝜆 is real, thus proves the second assertion. It remains to prove the
third statement. Since 𝐴 > 0, 𝐴t > 0. We can apply (1.) and (2.) to 𝐴t. Let 𝑥 ∈ ℝ𝑛

>0 be an
eigenvector of 𝐴t with eigenvalue 𝜌(𝐴t) = 𝜌(𝐴). Consider

𝑋 ∶= {𝑦 ∈ ℝ𝑛 ∶ 𝑥t ⋅ 𝑦} ⊂ ℝ𝑛.

Note the following facts:

1. 𝑋 is an 𝐴-invariant subspace. (∵𝑥t ⋅ 𝐴𝑦 = (𝐴t𝑥)t𝑦 = 𝜌(𝐴)𝑥t𝑦 = 0, for all 𝑦 ∈ 𝑋.)

2. 𝑤 ∉ 𝑋. 􏿴Recall that 𝑣 = 􏿴𝑣1 𝑣2 … 𝑣𝑛􏿷
t
and 𝑤 = 􏿴|𝑣1| |𝑣2| … |𝑣𝑛|􏿷

t
is an eigenvector

of 𝐴with eigenvalue |𝜆| = 𝜌(𝐴).􏿷

Thus, ℝ𝑛 = 𝑋 ⊕ ℝ ⋅ 𝑤. To show the algebraic multiplicity of 𝜌(𝐴) is 1, it suffices to show that
there is no eigenvectors in 𝑋 with eigenvalue 𝜌(𝐴). Let 𝑦 ∈ 𝑋 with 𝐴𝑦 = 𝜌(𝐴)𝑦. Then from
the prove of (1.), it follows that

𝐴𝑦∗ = 𝜌(𝐴)𝑦∗, where 𝑦∗𝑖 = |𝑦𝑖| .

We saw that the components of 𝐴(𝑦 + 𝑦∗) is either all zeros or all positive (why?). This in-
dicates 𝑦∗ = ±𝑦. However, 􏾉𝑦∗, 𝑥􏽼 > 0 contradicting the definition of 𝑋. This completes the
proof.

Corollary. Let 𝐴 ∈ 𝑀𝑛(ℝ) be a regular matrix. Suppose 𝐴𝑘 is positive. Then, The following
statements are true.

1. There is a positive vector 𝑢 ∈ ℝ𝑛
>0 such that 𝐴 ⋅ 𝑢 = 𝜌(𝐴)𝑢.

2. If 𝑣 ∈ ℂ𝑛 is an eigenvector of 𝐴with eigenvalue 𝜆 satisfying |𝜆| = 𝜌(𝐴), then 𝜆 = 𝜌(𝐴).

3. The algebraic multiplicities of 𝜌(𝐴) is 1.

Proof. Let Ev(𝐴) be the multiset of all eigenvalues of 𝐴 in ℂ counted with multiplicity. In
other words,

Ev(𝐴) = the multiset of roots of ch𝐴(𝑥).

If Ev(𝐴) = {𝜆1, 𝜆2, … , 𝜆𝑛}, then Ev(𝐴𝑘) = {𝜆𝑘1, 𝜆𝑘2, … , 𝜆𝑘𝑛} (from the theory of the Jordan forms).
Hence, 𝜌(𝐴𝑘) = 𝜌(𝐴)𝑘. Without loss of generality, we assume that |𝜆1| = 𝜌(𝐴), and we will
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write 𝜆 for 𝜆1. By Theorem 86, 𝜆𝑘 ∈ ℝ>0 and there exists 𝑢 ∈ ℝ𝑛
>0 such that

𝐴𝑘𝑢 = 𝜆𝑘𝑢.

Let 𝑣 ∈ ℂ𝑛 be an eigenvector of 𝐴 with eigenvalue 𝜆. Then, 𝑣 is an eigenvector of 𝐴𝑘 with
eigenvalue 𝜆𝑘. Theorem 86 asserts that 𝑣 and 𝑢 differ a scalar in ℂ. Thus, 𝑢 is an eigenvector
of 𝐴 and

𝐴𝑢 = 𝜆𝑢.

On the left side is a positive vector, so 𝜆 is a positive real number. (∵𝜌(𝐴) ≠ 0, otherwise
𝐴𝑘 = 0 for large enough 𝑘.) This proves the first statement.

To see the second statement, let 𝑤 ∈ ℂ𝑛 be an eigenvector of 𝐴 with eigenvalue 𝜇 satis-
fying |𝜇| = 𝜌(𝐴) = 𝜆. Then,

𝐴𝑘𝑤 = 𝜇𝑘𝑤, |𝜇𝑘| = 𝜌(𝐴𝑘).

By (2.) and (3.) of Theorem 86, we have

𝜇𝑘 = 𝜌(𝐴𝑘),

and 𝑤 and 𝑢 differ scalar. This means that 𝑤 is an eigenvector of 𝐴with eigenvalue 𝜌(𝐴).
It remains to show the third statement. From |𝜆𝑘| > |𝜆𝑘𝑖 | for all 1 < 𝑖 ≤ 𝑛, it follows that

|𝜆| > |𝜆𝑖|. This proves the last assertion.

Theorem 86 and its corollary is actually a stronger result of Theorem 84. This theorem
has a generalization to irreducible matrix. We now formally give the following definition.

Definition 87 (Irreducible matrix). A non-negative matrix is 𝐴 is irreducible matrix if for
any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, there exist 𝑘 (depending on 𝑖, 𝑗) such that

􏾊𝐴𝑘𝑒𝑖, 𝑒𝑗􏽽 > 0,

where {𝑒1, 𝑒2, … , 𝑒𝑛} is the standard basis of ℝ𝑛 and ⟨⋅, ⋅⟩ is the standard inner product on ℝ𝑛.

Theorem 88. Let 𝐴 ∈ 𝑀𝑛(ℝ) be an irreducible matrix. Then the following statements are true.

1. There is a positive vector 𝑢 ∈ ℝ𝑛
>0 such that 𝐴 ⋅ 𝑢 = 𝜌(𝐴)𝑢.

2. The algebraic multiplicities of 𝜌(𝐴) is 1.

Remark. This generalization does not claim the following:

Let 𝑣 ∈ ℂ𝑛 be an eigenvector of 𝐴 with eigenvalue 𝜆 satisfying |𝜆| = 𝜌(𝐴).
Then, 𝜆 = 𝜌(𝐴).

Here gives a counterexample. Let 𝐴 ∈ 𝑀2(ℝ) be an non-negative matrix defined by:

𝐴 ∶=
⎛
⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎠ .

Note that 𝐴 is irreducible but NOT regular, however, ±1 are both eigenvalues of 𝐴.
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Proof of Theorem 88. From the definition of irreducible matrices, for every 1 ≤ 𝑖 ≤ 𝑛 and
1 ≤ 𝑗 ≤ 𝑛, there exists 𝑘 = 𝑘(𝑖, 𝑗) ∈ ℕ such that

􏾊𝐴𝑘𝑒𝑖, 𝑒𝑗􏽽 > 0.

We now let 𝑘0 = max(𝑖,𝑗) 𝑘(𝑖, 𝑗) ∈ ℕ. Then, (𝐴 + 𝜖𝐼𝑛)𝑘0 is positive for all 𝜖 > 0. Let Ev(𝐴) =
{𝜆1, 𝜆2, … , 𝜆𝑛} be the sorted multiset of eigenvalues of 𝐴, that is, we assume

𝜌(𝐴) = |𝜆1| = |𝜆2| = ⋯ = |𝜆𝑠| > |𝜆𝑠+1| ≥ ⋯ ≥ |𝜆𝑛| .

We claim that there exists an 𝜖 > 0 being small enough such that

|𝜆𝑟 + 𝜖| = 𝜌(𝐴 + 𝜖𝐼𝑛) and |𝜆𝑟| = 𝜌(𝐴), for some 1 ≤ 𝑟 ≤ 𝑠.

We show that all 𝜖 in the interval 􏿴(|𝜆𝑠| − |𝜆𝑠+1|)/4􏿷 satisfies the requirement. Let 1 ≤ 𝑝 ≤ 𝑠 and
𝑠 < 𝑞 ≤ 𝑛 be two integers. Then,

|𝜆𝑝 + 𝜖| ≥ |𝜆𝑝| − 𝜖 > |𝜆𝑞| + 𝜖 ≥ |𝜆𝑞 + 𝜖| .

This means 𝜌(𝐴 + 𝜖𝐼𝑛) = |𝜆𝑟| for some 𝑟 ∈ [1, 𝑠].
By Theorem 86 and its corollary, 𝜆𝑟 + 𝜖 ∈ ℝ>0 and there exists an 𝑢 ∈ ℝ𝑛

>0 such that

(𝐴 + 𝜖𝐼𝑛)𝑢 = (𝜆𝑟 + 𝜖)𝑢 ⟹ 𝐴𝑢 = 𝜆𝑟𝑢.

𝐴𝑢 is a non-negative vector and |𝜆𝑟| = 𝜌(𝐴) ≠ 0, thus 𝜆𝑟 = 𝜌(𝐴) ∈ ℝ>0. This proves the first
assertion.

To see the second assertion, suppose

ch𝐴(𝑥) = (𝑥 − 𝜆𝑟)􏾟
𝑖≠𝑟
(𝑥 − 𝜆𝑖).

Then,

ch(𝐴+𝜖𝐼𝑛)(𝑥) = (𝑥 − 𝜆𝑟 − 𝜖)􏾟
𝑖≠𝑟
(𝑥 − 𝜆𝑖 − 𝜖).

By the corollary of Theorem 86 again, (𝑥 − 𝜆𝑖 − 𝜖) ≠ (𝑥 − 𝜆𝑟 − 𝜖) for all 𝑖 ≠ 𝑟. This completes
the proof. □

Definition 89 (Perron-Frobenius vector). Let 𝐴 ∈ 𝑀𝑛(ℝ) be an irreducible matrix. Let 𝑣𝐴 be
the unique vector in ℝ𝑛

>0 such that

𝐴𝑣𝐴 = 𝜌(𝐴)𝑣𝐴 and
𝑛
􏾜
𝑖=1
𝑣𝑖 = 1,

where 𝑣𝑖 are the 𝑖-th component. 𝑣𝐴 is called the Perron-Frobenius vector, or briefly, P-F
vector.

3.3 Directed Graphs with Weights and Matrices
Definition 90 (Directed graphs with weights). A (directed) graph is an ordered pair 𝐺 =
(𝑉, 𝐸), where 𝑉 is called the vertex set and 𝐸 is called the set of edges. The vertex set 𝑉 =
{𝑣𝛼 ∶ 𝛼 ∈ Λ} consists of some vertices, in the subsection, we assume that |𝑉| is finite. The set
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of edges 𝐸 consists of some pairs (𝑣𝑖, 𝑣𝑗) (𝑖, 𝑗 ∈ Λ), meaning that there is an edge from 𝑣𝑖 to
𝑣𝑗. A directed graph with weights means that we require the set of edges 𝐸 consists of some
triples (𝑣𝑖, 𝑣𝑗, 𝑤𝑖𝑗), meaning that there is an edge from 𝑣𝑖 to 𝑣𝑗 with weight 𝑤𝑖𝑗 ∈ ℝ>0.

Note that for each directed graph with weights, we can associate it with a non-negative
matrix by the following

Suppose |𝑉| = 𝑛. Let 𝐴𝐺 = (𝑎𝑖𝑗) ∈ 𝑀𝑛(ℝ) be a non-negative matrix defined by

𝑎𝑖𝑗 =

⎧⎪⎪⎨
⎪⎪⎩
𝑤𝑗𝑖 , if (𝑣𝑗, 𝑣𝑖, 𝑤𝑗𝑖) ∈ 𝐸
0 , otherwise

.

Then, for each finite directed graph 𝐺with weights, we associate it with a non-negative
matrix 𝐴𝐺, the adjacency matrix of 𝐺. We also can construct a graph from a given non-
negative matrix. Thus, some properties of the matrix theory can convert to properties of
graphs, and vice versa.

Now let 𝐺 be an unweighted directed graph, for each vertex, we can define the out-
degree and in-degree as

degout(𝑣) = #{𝑤 ∈ 𝑉 ∶ (𝑣, 𝑤) ∈ 𝐸}; degin(𝑣) = #{𝑤 ∈ 𝑉 ∶ (𝑤, 𝑣) ∈ 𝐸}.

We can construct a related matrix 𝑆 = (𝑠𝑖𝑗) ∈ 𝑀𝑛(ℝ) corresponding to the transitions in a
Markov chain of given network 𝑁 (a net work is an unweighted directed graph 𝐺), by

𝑠𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
degout(𝑣𝑗)

, if (𝑣𝑗, 𝑣𝑖) ∈ 𝐸

0 , if (𝑣𝑗, 𝑣𝑖) ∉ 𝐸 but degout(𝑣𝑗) ≠ 0
1
𝑛 , otherwise

.

Then, the just constructed matrix 𝑆 is a stochastic matrix, but it may not be regular or ir-
reducible. To make 𝑆 be able to apply Theorem 84, we give the following definition of the
google matrix that makes 𝑆 become positive.

Definition 91 (Google matrix). Let 𝑁 be a network (let 𝐺 be a unweighted directed graph).
The google matrix 𝑋 attached to the network 𝑁 (the graph 𝐺) is

𝑋 ∶= 𝛼𝑆 + (1 − 𝛼) 1𝑛𝐵, for some 𝛼 ∈ (0, 1). (7)

In (7), 𝐵 is defined as the matrix in𝑀𝑛(ℝ), all of whose elements are 1. Usually, 𝛼 = 0.85 is
the best model for simulating how people browse the web page according to the research by
GOOGLE at around 1997.

The Google matrix𝑋 is positive and stochastic. We can apply the Perron-Frobenius The-
orem (Theorem 84) to 𝑋 to get a P-F vector 𝑣𝑋 = 􏿴𝑣1 𝑣2 … 𝑣𝑛􏿷

t
. Then, we (Google) can

rank web pages in Google search engine results according to the magnitude of 𝑣𝑖. However,
how to find 𝑣𝑋 is a very tricky question. Most of the time, there are a lot of pages to be ranked,
so we must find a quick way to compute 𝑣𝑋 numerically.
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Theorem 92. Let 𝑣0 = 􏿴1/𝑛 1/𝑛 … 1/𝑛􏿷
t
∈ ℝ𝑛. Then,

lim
𝑘→∞

𝑋𝑘𝑣0 = 𝑣𝑋.

Proof. For 𝑥 ∈ ℝ𝑛, define

‖𝑥‖1 ∶=
𝑛
􏾜
𝑖=1
|𝑥𝑖| .

For any 𝑣 = 􏿴𝑣1, 𝑣2, … , 𝑣𝑛􏿷
t
∈ ℝ𝑛

≥0 such that∑𝑣𝑖 = 1, we have

𝐵 ⋅ 𝑣 = 􏿴1 1 … 1􏿷
t
.

In this case, we call 𝑣 a probability vector. Let 𝑣𝑘 = 𝑋𝑘𝑣0 (𝑘 ∈ ℕ). Consider ‖𝑣𝑘 − 𝑣𝑋‖1.

‖𝑣𝑘 − 𝑣𝑋‖1 = 􏿑􏿴𝛼𝑆 + (1 − 𝛼)
1
𝑛𝐵
􏿷(𝑣𝑘−1 − 𝑣𝑋)􏿑

1
= ‖(𝛼𝑆)(𝑣𝑘−1 − 𝑣𝑋)‖1 ,

because 𝑣𝑘−1 and 𝑣𝑋 are probability vectors. Define 𝑥(𝑘) ∶= 𝑣𝑘 − 𝑣𝑋. Then, 𝑥(𝑘+1) = 𝛼 ⋅ 𝑆 ⋅ 𝑥(𝑘).
Note that

􏿎𝑥(𝑘+1)􏿎1 =
𝑛
􏾜
𝑖=1
|𝑥(𝑘+1)𝑖 | ≤ 𝛼

𝑛
􏾜
𝑖=1

𝑛
􏾜
𝑗=1
𝑠𝑖𝑗 |𝑥

(𝑘)
𝑗 |

= 𝛼
𝑛
􏾜
𝑗=1

𝑛
􏾜
𝑖=1
𝑠𝑖𝑗 |𝑥

(𝑘)
𝑗 | = 𝛼

𝑛
􏾜
𝑗=1
|𝑥(𝑘)𝑗 | = 𝛼 ⋅ 􏿎𝑥(𝑘)􏿎1 .

This implies

􏿎𝑥(𝑘)􏿎1 ≤ 𝛼
𝑘 ⋅ 􏿎𝑥(0)􏿎1 = 𝛼

𝑘 ⋅ 􏿎𝑣0 − 𝑣𝑋􏿎1 ≤ 2𝛼
𝑘.

We obtain

lim
𝑘→∞

𝑣𝑘 = 𝑣𝑋.

Corollary. We have 􏿎𝑋𝑘𝑣0 − 𝑣𝑋􏿎 ≤ 2 ⋅ 𝛼𝑘, It is useful when we need to estimate the error
between 𝑋𝑘𝑣0 and 𝑣𝑋.

This method to approximate the exact value of 𝑣𝑋 is called the power method. We now
consider a more general question. Given a positive stochastic matrix𝐴 ∈ 𝑀𝑛(ℝ) and let 𝑣0 be
a vector in ℝ𝑛, then we wonder whether the limit lim𝐴𝑘𝑣0 exists and what the limit is. The
answer is given by the next theorem.

Theorem 93. Let𝐴 be a positive matrix. Let 𝑤, 𝑣𝐴 ∈ ℝ𝑛 be the P-F vectors of𝐴t and𝐴, respectively.
Let 𝑣 ∈ ℝ𝑛 be an arbitrary vector, then

lim
𝑘→∞

􏿶
𝐴
𝜌(𝐴)􏿹

𝑘

𝑣 = ⟨𝑣, 𝑤⟩
⟨𝑣𝐴, 𝑤⟩

⋅ 𝑣𝐴,

where ⟨⋅, ⋅⟩ is the standard inner product.
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Proof. Recall that in the proof of the Theorem 86, we used the fact that

ℝ𝑛 = (ℝ ⋅ 𝑣𝐴) ⊕ 𝑊 (𝑊 ∶= (ℝ ⋅ 𝑤)⟂ = {𝑥 ∈ ℝ𝑛 ∶ ⟨𝑥, 𝑤⟩ = 0}),

is a direct sum of 𝐴-invariant subspace of ℝ𝑛. For each 𝑣 ∈ ℝ𝑛, write 𝑣 = 𝛼𝑣𝐴 + 𝑦, where
𝑦 ∈ 𝑊. Then,

􏿶
𝐴
𝜌(𝐴)􏿹

𝑘

⋅ 𝑣 − 𝛼𝑣𝐴 = 􏿶
𝐴
𝜌(𝐴)􏿹

𝑘

⋅ (𝑣 − 𝛼𝑣𝐴) = 􏿶
𝐴
𝜌(𝐴)􏿹

𝑘

⋅ 𝑦

⟹ 􏵵􏿶
𝐴
𝜌(𝐴)􏿹

𝑘

⋅ 𝑣 − 𝛼𝑣𝐴􏵵 = 􏵵􏿶
𝐴
𝜌(𝐴)􏿹

𝑘

⋅ 𝑦􏵵 ≤ 􏿶
1

𝜌(𝐴)𝑘 􏿹 ⋅ 􏿎(𝐴|𝑊)
𝑘􏿎 ⋅ |𝑦|

< 𝐶 ⋅ 􏿶
𝜌(𝐴|𝑊)
𝜌(𝐴) 􏿹

𝑘

⋅ |𝑦| (by Gelfond’s formula).

Since 𝜌(𝐴) > 𝜌(𝐴|𝑊) (by Theorem 86), we have

lim
𝑘→∞

􏿶
𝐴
𝜌(𝐴)􏿹

𝑘

⋅ 𝑣 = 𝛼 ⋅ 𝑣𝐴.

On the other hand, we have

⟨𝑣, 𝑤⟩ = 􏾉𝛼𝑣𝐴 + 𝑦,𝑤􏽼 = 𝛼 ⟨𝑣𝐴, 𝑤⟩ ⟹ 𝛼 = ⟨𝑣,𝑤⟩
⟨𝑣𝐴, 𝑤⟩

.

This proves the theorem.

Remark. This theorem does not hold if 𝐴 is an irreducible matrix since we use the fact that

If 𝐴 is positive (non-negative), then 𝜌(𝐴) > 𝜌(𝐴|𝑊). (𝑊 is the orthogonal
complement of ℝ ⋅ 𝑣𝐴.)
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