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I wrote this note because I often found that I could not remember many important
theorems when I was studying Linear Algebra II, and my teacher did not choose a refer-
ence book for the next semester. The main reference is Professor Ming-Lun Hsieh’s video
[B], and the famous linear algebra textbook [2].

The content now covers most of the quotient space, dual space, and inner product
space, even more than in “Linear Algebra”[2], like Hilbert space. I have tried to keep the
proof as concise as possible, and I have also omitted all the examples.
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1 Quotient and dual spaces

1.1 Quotient space

Definition 1 (Quotient space). Let V be a vector space and let W be its subspace. Define an
equivalence relation ~ on V such that
(%] ~Uzifvl—02€W.

It is easy to verify that ~ is indeed an equivalence relation on V. For each v, € V, define
[vg] = {v €V :v~ vy} the equivalence class of vy. Then, {[v] : v € V} is called the quotient
space V/W.

Remark. The quotient space V/W is equipped with a natural linear structure, namely,

[01] + [05] = [v1 + vp], forallvy,v, €V
clv1] = [cvq], forallv; e Vandce F

Although it is crucial that we shall check these natural addition and scalar multiplication are
“well-defined”, we omit here.

Definition 2 (Quotient maps). There is a natural surjective map
n:V-o>V/W
v [v]

which is called the quotient map. Moreover, it is a linear transformation.

Remark.
kernm ={v eV :n(v) =[0]}
={veV:[ov] =[0]}
={veV:v-0e W}
=W.
Corollary. It follows from the dimension formula that dimy V/W = dimy V — dimp W when-
ever V is finite dimensional.

Here we give an alternative proof without using the dimensional formula. Since V has
finite dimension, let 8 = {wy, w,, ..., w,} be a basis of W and extend B to A = {wy, w5, ..., w,} a
basis of V. We claim that {[w,,], ..., [w,]} is a basis of V/W. To see this, we shall show that:

1. The set {[ws,1], ..., [w,]} generates V/W.
Suppose [v] € V/W. Letv = E:zl a;w;, then

[v] = l ) aiwiw = ), ailw;]

i=s+1 i=s+1



2. {[wsy1], ..., [w,]} is a linear independent set over F.
Suppose Z:: o1 @i - [w;] = [0], for some a; € F. Then,

i=s+1

(== Er:aiwiew

i=s+1
r S
= Z aw; = Z‘ijj, for some B; € F.
i=s+1 j=1
We conclude that a; are all zeros, since A is a basis of V.

Discussions above show that dimp V/W = r —s = dimy V - dimy W. Now, we shall study
some properties about the quotient space V/W. The next theorem characterize the quotient
space V/W by the following universal property.

Theorem 3. Let T be a linear transformation from V to U, such that ker T contains W, namely
W CkerT. Then, T factors through 1 uniquely. That is, there exists a unique linear transformation
S: V/W — U such that

T=Som.
Proof. Define S : V/W — U by
5([0]) = T(v).

We first show that S is a well-defined map, namely, if [¢v] = [¢’], then T(v) = T(v"). Note
that [v] = [v'] = v-v" € W C ker T, we conclude T(v) = T(v’). By definition, S is a linear
transformation and Sert = T. The uniqueness of such S follows from the surjectivity of 7. [J

Theorem [ implies that the following diagram commutes.

V > U

VIW

Remark. The quotient space V/W with the quotient map 7 is the unique vector space satis-
tying the theorem. That is, if we are given n’ : V — V’ satisfying the property: for every
linear transformation T : V — U with W C ker T, there exists a unique S’ : V' — U such that
S’ om’ =T. Then, V' ~ V/W uniquely.

Proof. From the assumptions, we have

A!'S:V/IW - V’/,suchthatn’ =Som
A!S: V' - V/W,suchthatt =S5 o7’ '
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This shows S o §" = Idy/; S’ o S = Idy, (using Theorem [ again.) We conclude V' =~ V/W
uniquely. ]

Corollary. Let T : V — W be a linear transformation. Then,
Viker T ~ImT.

Hence, dimp V/ker T = dimp ImT.
Proof. From Theorem B, we have: there exists a unique S : V/kerT — W, such that T = Som.
It follows from the surjectivity of 7 that ImS = ImT. We claim that S is injective. Note that
[v] € V/ker T : S([v]) = 0}
[v] € V/kerT : T(v) = 0}
[v] € V/kerT : v € ker T}

= {[0]}.
Thus, S is a bijection. This completes the proof. O

ker S = {
{

Now, let T : V — V be a linear transformation and let W C V be a T-invariant subspace.
Then, T induce a linear transformation T on V/W define by:

T:VIW - V/W
[o] = [T@)]
This is a well-defined map since
[0] =[] = v-v eW
= T@)-T@)=Tw-v)eW
= [T()] =[T@)].

Now, let B = {v4, vy, ..., v;} be a basis of W, and extend it to A = B LI B’, a basis of V. We
have shown that [B'] = {[v] : v € B’} is a basis of V/W. Then, we have

[le]B *

[T]y{ =

0 T
We thus have
?mm=¢wwwmw

mr(x) is divisible by my (x) '
Corollary. If T is diagonalizable, then so is T.

The corollary follows from the fact that my(x) is divisible by mz(x). We next shall discuss
the concept of dual spaces.



1.2 Dual space

Definition 4 (Dual space). Let V be a vector space over F. It is well-known that L(V,F) is
a vector space over F. It is called the dual space of V, and its elements are called linear
functionals of V. We often write V" to denote the dual space of V.

Recall that:

Given two vector spaces V, W over F. Then we have L(V, W) is a vector space
over F and

dlmF L(V, W) = dlmF V- dll’np W.

We conclude that dimp VY = dimp V if dimp V' < co. Here we give an alternative proof.
Theorem 5. Suppose V is a finite dimensional vector space over F. Then, dimp V¥ = dimp V.
Proof. Let B = {vq,v,,...,v,} be abasis of V. Let us consider the following linear functionals:

UIV: V>F
n
Eai'vi'—’ai
i=1

We claim that 8" = [vlv LU, e, Oy ] is a basis of V. We first show that 8" is linear indepen-
dent. Suppose there exist §; € F such that

n
DBy =0,

i=1

then
n
2 b (1) =0.
i=1
This shows

Bi=0, foralli=1,2,..,n.

Next we show that 8" generate V. Given ¢ € VV. Then, from the linearity of ¢, we have
n
¢ = Zf(vi)-v}’.
i=1

We conclude that 8" is a basis of VV. O
Remark. The basis B is called the dual basis of B5.

Given a linear transformation T : V — W, it induces a linear transformation TV : WY —
VY between dual spaces defined by:

TV(€)(v) := €(T(v)), for £ € WY and v e V.

It is easy to verify that TV is a linear transformation.
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Theorem 6. Let V, W be two finite dimensional vector spaces over F. Let A = {vy,0,,...,v,} and
B = {wy,wy, ..., w,} be bases of V and W, respectively. Given T : V. — W. Then,

[T]tﬂ,ﬂ = [TV ]Bv’ﬂv :

Proof. Let A :=[T]4 g = (4j)uxn and B := [TV] = (bij)nxn- From the definition, we have

B\/,ﬂ\/

m
T(v)) = Y, a;w;
i=1

Then,
m
by = TV (! )(v) = w) (T(v) = w) | D] ajw; | = ay.
i=1

This proves the theorem. O

Theorem 7. Let V be a vector space and let W C V be a subspace. Then,
(V/W) = {ee VY : W ckert].

Proof. We have known that there is a natural map © : V. —» V/W. We claim that 7" is the
isomorphism that bijects (V/W)" and {é’ eVV:WcCkert ] We first show that " is injective.
Suppose 1V (€) = 0, for some ¢ € (V/W)". Then,

I(m(v)) =0, forallve V
= {([v]) =0, forallve V.

This shows the injectivity of V. Hence, (V/W)" ~ Immn". It suffices to show that Imn" =
{eeVY:W ckert].

1. ImnY C {f eVV:WCcC kerf].
For each S € (V/W)Y and w € W, we have

1" (S)(w) = S (n(w)) = S ([w]) = S([0]) = 0.

2. {f eVV:WCcC kerf] c Immn".
Let ¢ € VY such that W C ker ¢. Theorem P asserts that there exists a unique S : V/W —
F such that £ = S o t. This implies 7t¥(S) = ¢.

Discussions above complete the proof. O
Corollary. Let A € M,,,.,,(F). Then, rankA = rankA".

Proof. LetV =F", W =F"andletT : V — W defined by
T(v)=A-v.



Then it is equivalent to prove
dimImT = dim (ImT").
By Theorem [/,
(W/ImT)" = {¢ € WY : ImT C ker ¢} = {£ € WY : T¥(£) = 0} = kex(T"). (1)
Thus,
dim W — dim ImT = dim W/ImT = dim (W/ImT)¥ = dim W" — dim Im(T").
This completes the proof. O

Theorem 8. Let V and W are two finite vector spaces, and let T : V. — W be a linear transformation.
Then,

1. T is surjective if and only if T" is injective.
2. T is injective if and only if T" is surjective.
Proof. In the proof of the previous corollary, we have shown in equation [] that
(W/ImT)Y ~ ker(T"),
this proves the first assertion. Similarly, we have
(V/kerT)Y ~ {f eVV:kerT C kerf]. (2)
We claim the set on the right hand side is Im(T").

1. {£e VY kerT C ker{} c Im(T").
Let £ € VY such that ker T C ker €. It is well-known that there exists a subspace X ¢ W
such that W = ImT & X. Consider a transformation s : W — F defined by:

s(w) = £(v),

where w = T(v) + x, for some v € V and x € X. This is a well-defined map, since
ker T C ker . Note that s is a linear transformation and £ = so T = TY(s). This implies
[¢e VY kerT ckert}cIm(TY).

2. Im(TY) C [é’ e VV:kerT C ker t’].
Let £ € Im(T"V). Then, there exists s € WY such that £ = TV(s) = so T, thus ker T C ker (.

Discussions above with equation [] show that
(V/ker T)Y =~ Im(TV),
which is equivalent to the second assertion. O

Remark. In the class, the teacher proved with another approach, which use the following
property:



Let V be a finite dimensional vector space, and let V¥ be the dual space
of VY, then there is a natural identification, that is, there is an isomorphism
¢ : V — VYV defined by

¢:xm (2:f > f(), feVY.

\.

Next, we show that why we shall study dual spaces by the following theorem.

Theorem 9. Let V be a finite dimensional vector space over F. Let €10, ..., {; € V'V be linearly
independent. Suppose by, b,, ..., bs € F and put

E={oeV:{@)=b, forall1 <i<s}.
Then, B + @.
Proof. Consider the linear transformation T : V — F° defined by:
T :v (61(0),05(v), ..., €5(0)).

Then, dim (ker T) = dim V —s. Here we omit the details of the proof. O

2 Inner product space

Definition 10 (Inner product). Let V be a vector space over F, where F = R or C. A function
(-,7) 1V xV — Fis called an inner product if the following conditions are satisfied:

1. (x+y,z)=(x,z) +(y,z), forallx,y,z € V.

2. {ex,y) =c-{x,y), forallx,y € Vand c € F.

3. (x,y) = (y,x), forallx,y € V.

4. (x,x) >0, for all x € V and (x, x) = 0 if and only if x = 0.

We write (V, (-, -)) for a vector space V together with an inner product structure (-, -). In the
following text, F still stands for R or C unless otherwise stated.

We could also define the concept of norm (or length) of a vector v € V.
Definition 11 (Norm). For each v € V, define the norm of v as |[v|| = (v, v)l/ 2,

Theorem 12 (Riesz representation Theorem on a finite dimensional space). Let (V,<:,-)) be
an inner product space. Then,

O:V -V
v = Q(0)(x) = (x,v)
is an isomorphism.
Proof. We first prove that @ is injective. Note that
ker® ={veV :{(x,v) =0, forallx € V} = {0}.

Since V is finite dimensional, we have dimf V = dimp V", thus @ is an isomorphism. [
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In other words, inner product (-, -) identifies V with its dual space V¥ when V is finite
dimensional. We now start study how to represent an inner product structure with a matrix.
Suppose V is a finite dimensional vector space, and let A = {vy, v5, ..., v,,} be a basis of V. For
any x,y € V, there exist ¢;, 5; such that

Then,

Hence, if we let

we have

p1

(x,y)=(a1 Ay .. an)-Q- ﬁz

Pn

The matrix Q) is called the matrix of (, ) associated with ‘A.

Theorem 13 (change of basis). Let 8 = {wq, ..., w,} be another basis of V. Assume that

n
w; = Z a;iv;, forall1 <j<n.
i=1
Then,
Q' =AQ- A4,
where Q' is the matrix of ( , ) associated with B and A = (aij).

Proof. Note that

)= (S S

k=1 =1

Il
-
L4 Tba-

ay; (vx, vp) aj;

)

ai" (or, v7) a,

=~
—_
—
Il
—_

This proves the theorem. O

Next, we shall ask whether we can define an inner product structure on V if we are given
a matrix QQ € M,,(F) and a basis A of V. The answer is no. In fact, the matrix can define an



inner product structure on finite dimensional V' if and only if it is positive definite. The next
theorem gives the sufficient condition for a matrix being able to define an inner product.

Theorem 14. If Q) = B B* for some B € M,,(F) with det B # 0, then (, )q 4 is an inner product for
any choice of A.

Proof. Let A = {vq,v,, ...,v,} be an arbitrary basis of V. It suffices to show the inner product
defined by () satisfies the fourth axiom of Definition [[0. If x € V, then

n
X = Z“i -v;, for some a; € F.
i=1

We have
ay
(x,x)Qlﬂ = (ozl ay .. an)-Q- a'z
ay
ay
=(a1 ar .. an)-B-B*- E
a,

= (yB) - (yB)",

where y = (a1 ay .. an) is a row vector. Write yB = ([3’1 B .. ,Bn) We get

R
Bo|_ N |a
& 0ga=B B2 - Ba) | [= DB 20,
: i=1
P
and (x,x)q # = 0 if and only if y = 0. From the assumption that det B # 0, it follows x = 0 if
(x,x) =0. O

Definition 15 (Hermitian and positive definite matrix). Let Q € M,,(F). Then,
1. Qs said to be Hermitian if Q* = Q.
2. Qis said to be positive definite if () is Hermitian and

x-Q-x* >0, for all row vector x € F"\{0}.

Remark. Let Q € M, (F). Define a function (-, -) of two variables on the vector space V = F"
by

x,y) =x-Q -y, where x and y are row vectors.
y y y

Then, (, ) is an inner product on V if and only if Q is positive definite.

10



2.1 Orthogonal projection

Definition 16 (Perpendicular). Let (V,(, )) be an inner product space. Then, we say a vector
v is perpendicular to w if

(v,w) = 0.
We often write v | w to indicate two vectors are perpendicular to each other.

Note that the Pythagorean theorem holds, that is, |[v + w||2 = ||v||2 + ||w||2 if (v,w) = 0.
Now, we can define orthogonal projection of x to y.

Definition 17 (Orthogonal projection). Given two vectors x,y € (V,(, )) (y # 0). Projy(x) is
the vector satisfying the following two conditions:

1. Projy(x) is parallel to y.
2. x— Projy(x) ly.

From this definition, we can assume that Projy(x) = a -y, for some a € F. Since x —
Projy(x) 1 y, we have

(x,y)
x—a-yy)=0 = a= .
( vY) T
We conclude that
X,
rojy(x) = { y2> Y.
Iyl

Lemmal. Letx,y € (V,(, )) (y #0). Then,

”Projy(x)” < Jlxl.

Moreover, the equality holds if and only if x is parallel to y.

Proof. It follows from the Pythagorean theorem. O

Corollary. |<x, y>| < ||| ||y ,holds forall x,y € V.

It immediate follows from Lemma [[. This inequality is known as “Cauchy’s inequality”.

Corollary. ||x + y” <|lxl| + ||y ,holds forall x,y € V.

Proof. It is equivalent to prove ||x + y||2 < (IlxI + ||y||)2.
e+ " < it + ) ?
= v+ ) < P+ 20l o]+ o

= WP+ Yy + (g, x) + ||y||2 < Il + 2 1l - [|y]] + ||1/||2
= R4, y) < Il -yl

Note that R{x, y) < |(x, y)| < x|l - ||y|| This proves the corollary. ]
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In general, if we were given a subspace W C V, we can discuss about Proj,, (x), the
orthogonal projection of x to W.

Definition 18 (Generalization of orthogonal projection). Let W be a subspace of V and let x
be a vector in V. Then, Proj,, (x) is the vector satisfying the following two conditions:

1. Projw(x) e W.
2. x—Proj, (x) L W. Thatis, x - Proj, (x) is perpendicular to any vectors in W.

The existence of Proj,, (x) in a finite dimensional vector space V follows from the follow-
ing theorem.

Theorem 19. Let V be a finite dimensional inner product space and let W be a subspace of V.. Define
W+ as

Wi = {v eV i(v,w)=0, forallw e W}.
Then, Wt is a subspace. Moreover, V. = W @ W

Proof. 1t is easy to see that W+ is a subspace of V. Recall Theorem [[2, we have an isomor-
phism:

V=V
v C,(x) =(x,0).
Note that the image of W' under this map is
{fe VY cher{’}.
By Theorem [, we have
WL~ (V/W)".
Thus,
dimp V = dimp W + (dimp V — dimp W)
= dimp W + dimp V/W
= dimp W + dimp W+,

We claim that W N W+ = {0}. Suppose x € W N W, then (x,x) = 0. This shows that x must
be 0. We conclude that

V=We WL
O

If we are given a subspace W C V and a vector x, then according to Theorem [[9, there
exist unique vectors w, € W, w), € W such that

X =W, + Wh.

We define Proj (x) := w,. We now discuss a new idea of (external) direct sum of vector
spaces.

12



Definition 20 (Direct sum). Let V;, V, be two vector spaces. Define
VieV, :={(v,vp) € Vi X V,}.
This space has a natural linear structure:
(v1,07) + (v],0p) := (V1 + V], 05 + 0p)
c(vq,v,) 1= (c-vq1,C-Vy)

We shall say V; @ V is the external direct sum of V; and V.

We can check that:

r

If W3, W, are two subspaces of V, such that W; N W, = {0}. Then,
W1 @in Wo = Wy &gyt Wo,

where @, is the original (internal) direct sum.

2.2 Orthonormal basis and Gram-Schimdt process

Definition 21 (Orthonormal basis). A set of vectors {v, : @ € A} is an orthonormal set if
Uq,0g) = 0 whenever a # §, and ||v,x|| =1 for all @ € A. An orthonormal basis is an orthonor-

mal set which is a basis.
Lemma 2. If {vy,0,, ..., v,} is an orthonormal set, then it is linearly independent.

Proof. Suppose there exist a; € F such that

’
20(1' *0; = 0.
i=1

Then,
r
0=(0,7;) = <Z a; - vj, Ui> = a;.
i=1
This completes the proof. O
Remark.

1. If dimp V' < oo, then any orthonormal set of cardinality equal to # is an orthonormal
basis.

2. Let A be an orthonormal basis. Then, Q) = [,,, where Q is the matrix of (, ) associated
with A.

The existence of orthonormal bases in a finite dimensional inner product space follows
from the next theorem. The technique to find such a basis is known as Gram-Schmidt process.

13



Theorem 22 (Gram-Schmidt process). Suppose {v1, vy, ..., v,} is linearly independent. Then, there
exists an orthonormal set {wq, w,, ..., w,} such that

spanF{wl, Wy, ..., Wy} = spanF{vl, Uy, e, Uy}

Proof. Define u; and w; recursively as:

Uy
Uy =7 wy = m
1
U
Uy = vy — (U, W1) - Wy wz:m
2
Us
Uz =03 —(v3, wy) - Wy — V3, Wy) - Wy Wy = H
3
k
Uy
uk:vk_z<vkzwi>'wi wk:m
=1 Uy

We claim that spanF{vl, e, Ukt = spanF{wl, ., Wi} and {wy, ..., wy} is an orthonormal set, for
each1 < k < r. It is trivial when k = 1. Suppose this assertion is true for some k = m < r,
then (i1, W;) = Vs, Wi) — Uy, Wiy = 0 fori < m. Also, v,,,1 € spanF{wl, e, Wy} =
spanF{vl, e, Uy}, since {vq,vy,...,0,} is linearly independent. We thus have u;,; # 0, this
completes the proof by mathematical induction on k. O

Corollary.

1. If (V,(, ))is afinite dimensional inner product space over F, then an orthonormal basis
exists.

2. Let Q) be a positive definite matrix. From the remark of Definition [[§, () defines an inner
product on V = F". Let P be an invertible matrix such that Pe; = w;, where {e, ..., e,}
is the standard basis of V and {wy, ..., x,,} is one orthonormal basis of V with respect to
the inner product defined by Q). Then, Theorem [[3 asserts

[,=Pt.Q.P — Q=p1.p1,
LetQ = P‘lt, then we conclude

Q=0Q-Q".

For each positive definite matrix QO € M, (F), there is an invertible matrix Q €
M,,(F) such that Q = Q- Q".

Recall that in Theorem [9 we have shown the existence of Proj,, (x) when W is a subspace
of finite dimensional vector space V. In fact, we can derive the same result but using a weaker
condition.

Theorem 23 (orthogonal projection revisited). Let (V,(, )) be an inner product space. (It could
be infinite dimensional.) Let W C V be a subspace with finite dimension. Then, Proj,, (x) exists

14



uniquely. In fact,

n

Proj,, (x) = D (x, w;) - wj,
i=1

where {wy, w,, ..., w,} is an orthogonal basis of W.

Proof. We first show that <x — Proj, (x), w> =0, for all w € W. Note that

(1= Proj, (0, i) = i) = 3, ) =0,
forall1 <i < n. It remains to show Proj, (x) is unique. Let y € W such thatx -y € W+, then
2
”Projw(x) - y” = <Projw(x) -y, Projw(x) - y>
= <Projw(x) —x+x -y, Proj,(x) - y>
= <Projw(x) —x, Proj,, (x) - y> + <x -y, Proj,, (x) - y>

=0+0=0.
O

We now generalize the idea of orthogonal projection to the case when the subspace W
is not given.

Definition 24 (Projection). Let V be an inner product space over F,and let T : V — V be a
linear transformation.

1. We say T is a projection if T? = T.
2. We say T is an orthogonal projection if T? = T and (ImT)+ = ker T.
Remark. LetT : V — V be an orthogonal projection defined as above. Then, T(v) = Proj, (v),

where W := ImT.

2.3 Hilbert space

In the previous text, lots of properties of inner product spaces only hold when the space
is finite dimensional. This subsection we shall introduce a kind of inner product space that
act like a finite dimensional inner product space.

Definition 25 (Hilbert space). Let (V,(, )) be an inner product space. The norm ||-|| induces
a metric d on V. V is said to be a Hilbert space, if (V,d) is a complete metric space in the
sense that every Cauchy sequence converges. A subspace W C V is closed if W is a Hilbert
subspace.

Remark. In analysis, “closedness” of a subspace W means that every convergent sequence
in W converges to a point in W. This definition coincides the above definition.

15



Theorem 26 (Existence of orthogonal projection). Let (V,(, )) be a Hilbert space and let W C V
be a closed subset. Then, Proj,, (x) exists uniquely.

Proof. Letd :=inf cpy ||w — x||. We claim that there exist a vector y, € W such that ||y0 - x” =d.
By the definition of infimum, there exist y,, such that

1
d < ly, - <d+-.

We first show that (yn) is a Cauchy sequence. Given € > 0. Let N € IN large enough so that

84 4
ﬁ+ﬁ<€.

By the parallelogram law, we have

2 2 2 2
s =yl = 201y =+l =€l = s + 30 = 2]

2
1 1 2
<2[(d+—) +(d+—))—4 yn+ym—x”
n m 2
1\ 8d 4
<4ld+=| -4d*=—+ = <¢,
N N N2

where n,m > N. Hence, (yn) is a Cauchy sequence. Suppose v, — ¥, then ||y0 - x” =d. We
now show that p = x — yy € W'. Let us introduce two parameters t € F and w € W, then we
have

”P‘t'wuz = ||x—y0—t-w||2 > 42
— |l + -l - 2R( - (p,w)) = 2 o)
= 2 -l - 2%(E - (p, w)) = 0.

If (p,w) # 0, then (p,w) = r - exp (i0) for some r > 0. We plug int = € - exp (i6) to (), for
small enough € > 0. Then,

lwll” > 2 R(er),
which fail to be true when € is small enough. Therefore, yo = limy,, = Proj, (x). O

Next, we introduce the concept of bounded linear functional.

Definition 27 (Bounded linear functional). Let (V,(, )) be a Hilbert space over F. A linear
functional ¢ : V — F is said to be bounded if there exists M > 0 such that

[L@)] < M- |[v]],

for all v € V. The set of all bounded linear functional on V is denoted by Vy/;,4. In fact, we
can similarly define the concept of bounded linear transformation.

Remark.

1. Any bounded linear functional is a continuous function, with respect to the norm of V

and metricon F.

16



2. Any finite dimensional inner product space V is a Hilbert space, moreover, V)34 = V.

Theorem 28 (Riesz representation theorem). Let (V,(, )) be a Hilbert space, and let £ € V44
be a bounded linear functional, then there exist y € V, such that

f(x) = (x, y)/
forallx e V.

Proof. Let ¢ be abounded linear functional. Then, N = ker ¢ is a closed subspace of V. (Recall
that the preimage under a continuous function of a closed set is closed.) If N is V, then £ = 0,
and we can take y = 0. Now, we assume that N C V, it follows from Theorem [§ that there
exists v € N+. (Hence £(v) # 0.) Consider a function a(x) = £(x)/¢(v), for all x € V. Then,
t(x) = a(x) - {(v)

= {(x-a-v)=0

—x-a-veEN

= (x—-a-v,0)=0

= (x,v) =a-(v,0)

()

= {(x) = {x,y), wherey = W - 0.
v

2.4 Adjoint linear transformation

Definition 29 (Adjoint linear transformation). Let (V,(, )) and (W, (, )) be two inner prod-
uct spaces over F and let T : V — W be a linear transformation. We define the adjoint of T is
the transformation T* : W — V such that:

(T*(w),v) = (w, T(v)),
forallve Vandw e W.
We now show that T™ exists uniquely if both V and W are finite dimensional.

Theorem 30. Let V and W be two finite dimensional inner product spaces and let T : V — W be a
linear transformation. Then, T* exists uniquely.

Proof. By Theorem P2, there exist orthonormal bases of V and W, say A = {vy,...,v,} and
B = {wy, .., wy}, respectively. Let [Tlgg = A = (4;)ux,- We now assume T" exists, and let
[T*],3 = (bij)nsm- Then,

(1@ 3) = (w1, )
n m
= <E by; - v, vj> = <wi, - w1>
k=1 I=1
— b]z = El_l]

17



This shows the uniqueness of T*. In fact, this also shows the existence of T*, since we can
define:

™ W-—>V
[w]g > A" - [w]g,

where [w]g denote the coordinate vector of w with respect to the basis 8. The calculations
above implies T* meets the condition of adjoint linear transformation. O

However, the adjoint of an operator is not always exist, especially in infinite dimensional
inner product space. The next theorem asserts that some operators on Hilbert space has an
adjoint. We shall first introduce the concept of bounded linear transformation.

Definition 31 (Bounded linear transformation). Let T : V' — W be a linear transformation
between two normed space. Then T is said to be bounded if there exists M > 0 such that

IT@Il,, <M-|lolly,, forallv e V.

Theorem 32 (existence of adjoint operators on Hilbert space). Let V be a Hilbert space. (Recall
Definition 5.) Let T : V — V be a bounded linear operator. Then, T*, the adjoint of T, exists.

Proof. This is a corollary of the “Riesz representation theorem”. For each x € V, consider
linear functionals:

tra(y) ={Ty),x), yev.

It is easy to check that {1 , is linear. We claim that if T is bounded then ¢r , is bounded. Note
that

x| = KTW), )| < || Tw)|| lIxll < M |[y]| 111l -

Thus, {7 , is bounded. It follows from Theorem 28 that there exists a unique z € V such that

lr () =y, z) =(T(y),x), forally e V

We define T*(x) := z. It is easy to verify that T" is a linear transformation. O

Theorem 33. Let V, W be inner product spaces over F, and let Ty, T, and T be linear transformations
from 'V to W. Suppose T7, T; and T* exist. Then, the following properties hold:

1. (Tl + Tz)* = TI + TE
2. (a-TyY=a-T", fora € F.

3. Let U be an inner product space and let S : W — U be a linear transformation with the adjoint
exists. Then, (SoT) = T" o S".

4. T*=T.
The proof is very straightforward, so we omit it.

Theorem 34. Let T : V. — W be a linear transformation between two “finite dimensional” inner
product spaces. Then,

18



1. (ImT)t = ker (T%).
2. (ker T)L = Im(T*).

Proof. To show the first assertion, suppose w € (ImT)1, namely,
(w,T(v)) =0, forallve V.
= (T*(w),v)=0,forallveV.

= T*(w) = 0.

=  weker(T).

Similarly, for the second assertion. we assume that v € Im(T”), then v = T*(w) for some
w € W. Note that

(v,x) =(T*(w),xy =(w, T(x)) =0, forall x € kerT.

Thus, we conclude that Im(T*) c (ker T)L. By the dimensional formulas, we get Im(T*) =
(ker T)L. O

Definition 35 (Unitary linear transformation (operator)). Let T : V. — W be a linear trans-
formation between two inner product spaces (probably infinite dimensional). T is called
unitary if

(T(v1), T(v2)) = (v, 02),
forall vy,v, € V.

The next theorem gives a characterization of unitary operators.

Theorem 36. Given a linear transformation T : V. — W between two finite dimensional inner
product spaces. Then the following statements are equivalent:

1. T is unitary.

2. IT@)l = 1oll, forallv e V.

3. T"oT =1dy.

4. T sends the orthonormal basis to an orthonormal set.

Proof.
(1) = (2): Obvious.
(2) = (1): Consider |[T(x +y)| = |+ /"
(T(x), TW)) + (T (y), T(x)) = {x,y) + (Y, x)
= R{T), T))) = R((x,v))-

If F = R, then (@) shows that (T(x), T(y)) = (x,y). If F = C, then plugginginy — i-y to
equation (f) gives

(4)

R((—0) - (T(), TW))) = R((=) - (x, ).

19



Together with equation [ indicate that T is unitary.
(3) & (1): T is unitary if and only if

(T(x), T(y)) ={x,y), forallx,y € V
= (T"T(x),y) ={x,y), forallx,y e V
& ((T'T-Idy)(x),y)=0,forallx,yeV
— (T*T —1dy) = 0.

(1) & (4): Let A = {v1, vy, ..., v,} be an orthonormal basis of V. Then,

<T(vi), T(vj)> = <vl~, vj> = {(1): 1: ij .

Thus, T(A) = {T(v1), T(vy), ..., T(v,)} is an orthonormal set.

(4) < (1): Let x,y € V be two arbitrary vector in V. Let A = {vy,v,, ..

orthonormal basis of V. Assume

n n
x=2ai'0i, }/:Eﬁz"vi-
i:l l:1
Then,

(T(x), T(y)) = <T(Z ;- v), T, Bi- Uz')> =Y o Bi = {x,y).
i=1 i=1 i=1

2.5 Spectral theory of normal operators

.,0,} be an

Definition 37 (Self-adjoint and normal operator). Let T : V' — V be a linear operator on an

inner product space V.
1. We say T is self-adjoint, if T = T'.

2. Wesay Tisnormal, if ToT* =T"oT.

Remark. A linear operator T : V — V is unitary if and only if T* = T~!. (Assume that V is

finite dimensional.) Thus, unitary operators and self-adjoint operators are normal.

In the rest of this subsection, if not specifically mentioned, V denotes the finite dimen-

sional inner product space over F (R or C.)

Theorem 38. Given T : V — V, a linear operator on finite dimensional space V. The the following

statements are equivalent.
1. T is normal.

2. IT@I =T )|, forallve V.
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Proof.
(1) = (2): Note that
(T(v), T(v)) =T"T(v),v) =(TT"(v),v) = (T"(v), T"(v)).
T +i-y)| ifF=C)

(2) = (1): Consider ||T(x + y)”z = |T*(x + y)”2 (and ||T(x +1i- y)”2 = |

Expanding both equations gives

(T*"T(x),y) =(TT*(x),y), forallx,y € V.
Thus, ToT*=T"oT. [

Corollary. Let T : V — V be a linear operator on a finite dimensional vector space V. Sup-
pose T is normal, and v is an eigenvector of T with eigenvalue A. Then, v is an eigenvector of
T* with eigenvalue A.

Proof. Since T isnormal, S = T —A-Idy is normal. (In fact, p(T) is normal, for all p(x) € F[x].)

We have Sv = 0. From Theorem B§, we have ||S*0|| = ||Sv|| = 0. Hence, v is in the kernel of
§* = T* - A -Idy. This completes the proof. O

We now prove an useful lemma.

Lemma 3. Let T be a linear operator on V, such that T* exists. (We have assumed nothing
about whether it is normal.) Then,

ker T*T = kerT.
Proof. Obviously, ker T' C ker T*T. It suffices to show that ker T*T C kerT. Letv € ker T*T,
then,
T"T(v) =0 = (I"T(v),v) =0
= (T(v),T(v)) =0
= IT@)Il =0
= T(v) =0.
O

Theorem 39 (Semi-simplicity of normal operators). Suppose T is a normal operator on V. If
T" =0, forsomen > 1. Then T = 0.

Proof. Let S = T*T. By Lemma [, it suffices to show ker S = V. Since T" = 0, we have §" = 0.
(T* and T commute.) We may enlarge 7 so that n = 2* for some k € N. Note that

12 - - SN k-
”Szk 10” = <Szk ', 6% 1v> = <(Szk 1) 2y, v> = <Szkv, v> =0.
Repeating this process gives us S = 0. O

Before we introduce the next theorem (Theorem f(}), we shall first prove another useful
result.

21



Lemma 4. Let V be an inner product space over F, and let T : V. — V be a normal operator
on V. Suppose p(x) and g(x) are polynomials in F with no common roots. Then,

ker (p(T)) L ker (q(T)),
that is, (v, w) = 0, for all v € ker (p(T)) and w € ker (q(T)).

Proof. Since p,q have no common roots, there exist A, B € F[x], such that
A()p(x) + B(x)q(x) = 1.
Let v € ker (p(T)) and w € ker (q(T)). We have B(T)q(T)(v) = v. Thus,

(v,w) = (B(T)g(T)(v), w) = {q(T)B(T)v,w) = (B(T)v,q(T)*(w)) @ (B(T)v,0) = 0.
(#) is true since:
weker(q(T) = |gM@)|| =0
= [0 @) =0
= q(T)"(w) = 0.
L]

Theorem 40. Let (V, <, )) be an finite dimensional inner product space over C. Let T : V — V bea
normal operator on V. Then, T is diagonalizable. Moreover,

S
V=EDE,=E,@E, 0k,
i=1

is the orthogonal decomposition of eigenspaces of V. Recall that E,_ is the eigenspace that which has
eigenvalue A.

Here we give two proofs.

Proof. Let chr(x) be the characteristic polynomial of T. The fundamental theorem of algebra
asserts that chr(x) splits completely, that is,

chy(x) = [T (= Ay
i=1

Then, we have learnt that V = @; L Wiin the theory of Jordan forms, where
Wi = ker (T - Ai . Idv)ni.

Consider TIWi on (W;,(, )IWini). Note that T|wl- is normal and that (TIWi —A;i-Idy)" = 0. By
Theorem BY, we conclude TIWi — A; - Idy, = 0. This implies

Wi =ker (T - A;-Idy)" =ker(T - A;-Idy) = E, .
It remains to show that each E,, is orthogonal to each other. It follows by Lemma f. O

Here is an alternative proof using mathematical induction.
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Proof. Let A € C be an eigenvalue of T. Then,
Ey={veV:T()=A-v}+{0}

Decompose V into Ey @ Ei. (V is finite dimensional.) We claim that E is a T-invariant
subspace. Let x € Ex and v € E;. Then,

(T(x),0) = (x, T*(v)) & <x, Xv> = A{x,0) = 0.
The equality (#) holds because of Corollary P.5. On the other hand,
dimE+ < dim V.

By induction, T L is diagonalizable and

Et=EPEs
i

This completes the proof. O

However, Theorem f( is not true for inner product space over R. But we have the fol-
lowing theorem.

Theorem 41. Let V be a finite dimensional inner product space over R, and let T : V — V be a
self-adjoint operator on V. Then, T is diagonalizable. Moreover,

V= @ E,.,
i=1

and Ej, L Ej, ifi#].

Proof. In view of the proofs of Theorem fU, it suffices to show that chy(x) splits completely
in R. Choose an orthonormal basis A = {vy, vy, ..., v,,} of V. Define a matrix

A= [T]j[ = (aij)nxn-
Then, it is well-known that
[T*]ﬂ = A"

Hence A® = A since T is self-adjoint. Now, assume A € C is an eigenvalue of T. Then, there
exists x € C" \ {0} (column vector) such that

Ax=A-x.
Consider
X(x*-x) =(Ax)" - x=x"-A"x=x"A-x=A1-(x"-x).
This indicates

AP =A- x> = AeR.
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Corollary. Let A € M,,(C) be a complex normal matrix, that is,
A-A=A- A
Then, there exists an invertible matrix P € M,,(C) such that:
1. P-P* =1,
2. P"LAP is diagonal.

Proof. Let V. = C" be an inner product space equipped with the standard inner product
structure. Let T : V — V be the operator defined by

v— A0,

Then, the standard basis is orthonormal and hence A* = A is equivalent to T is self-adjoint.
It follows from Theorem f( that

V= ESB E,
i=1

is a orthogonal decomposition. For each E, , we choose an orthonormal basis
&Z{i = {Uill /Uin,-]-
Then,
S
A=| |A=A uAL- LA
i=1

is an orthonormal basis. (Because E, L E A]..) Let P be the matrix sends the standard basis
to A. By Theorem B6, we conclude that P - P* = P*- P = I,,. Also, it is easy to see

ML, 0 - 0
P_lAP — O AZII’IZ
: : .0
0 e 00 Al
This completes the proof. O

Similarly, one can prove the following result:

Corollary. Let A € M,,(R) be a real matrix such that A' = A. Then, there exists an invertible
matrix P € M,,(R) such that:

1. Pt.P=pP.P' =1,
2. P71 AP is diagonal.

Corollary. Let T be a self-adjoint operator on inner product space V over F. Then, there
exists A; € R such that

T(v)=Aq -ProjE/11 (@) + Ay - P:rojE)\2 @)+ -+ A, - ProjEA (v).
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In Theorem B1], we show that every self-adjoint operator on vector space over R is di-
agonalizable. However, we do not deal with all normal operators. The next theorem is dis-
cussing operators over real inner product space.

Theorem 42. Let A € M,,(R) be a real normal matrix, that is,
At-A=A- At
Then, there exists an invertible matrix P € M,,(IR) such that:
1. P-Pt=pPt-P =1,

2. PT1AP = (@;1 Ail,) @ (@;:1 D?mj), where all A; € R, and all D; have the form:

( a /3]').
B 4

Remark. Here, we have a little abuse of notation. We write A @ B to represent

A 0
0 B)
k
if both A and B are square matrices. Also, we write P to mean @izl P=Pe®P&---®&P,for
square matrix P.

Before we start proving this theorem, we shall first prove some useful lemmas.

Lemma 5. Let V be an inner product space over IR, and let T : V — V be a normal operator,
such that

Sz = —Idv.
Letv; € V \ {0} and v, = S(v;). Then,
S'(v1) = -1y, S(vp) =v1, (v1,02) =0, |lv1ll = [[vo]l.
Proof. Consider
1501 + 0all” + 115*0; — 04
= (501, 5'01) + (501, 02) + (02, 5701) + (02, V2)
+(§"0y, S*vp) = {50y, V1) — (01, S*Vy) + (vq,01)
=(Sv1,501) +2-(50y,01) + 0y, 0p) + (S0, SUp) =2 - (S0v1,0,) + (v, 07)
=150y — vall” + IS0, + 4I° = 0.
This prove the first two assertion. Note that
(01,02) =01, Sv1) = (§"01,01) = (~Up, V1) = — (U1, Vp)
and that

2]l = (0, v3) = (So1,05) = (01, 5°0y) = (v1,01) = [0y .
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From Lemma [, we conclude that:

Continuing from the above definition, let
&y “2

w = — Wy = o
lloll’ [0l
Then, {w,,w,} is an orthonormal set. Moreover, W := span]R{wl,wz} is S-

invariant and S*-invariant.
0 -1
S = .
[ |W]{w1/w2} (1 0 )

Lemma 6. Let T : V — V be a normal operator on a finite dimensional inner product space.

\

Suppose
chr(x) = ((x—a)? +12)",
for some b # 0. Then, there exists an orthonormal basis A such that
dm
[T]a = (Z _b] :

Proof. LetS = (T —a)/b. Then, by Lemma B, we have an orthonormal set A; = {w;, w,}. Define
W1 = span {wy, w,}. Then,

That indicates that

We now claim that Wi- is a S-invariant subspace. Let v € Wi and w € W, then
(Sv,w) = (v, S*w) =0,

since W; is also a S*-invariant subspace. Similarly, we have an orthonormal set A, c Wi

such that
0 -1
el =1 o)

where W, is the subspace generated by A,. Also, (W; & W,)* is a S-invariant. Continuing
this process give s

v@w

each W; is spanned by an orthonormal set ‘A; and

[5|Wi]ﬂi - (g _01J
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Let A = [ | A;, then
a -b
T1. =
[T]4 (b HJ

Lemma 7. Let T : V — V be a normal operator on a finite dimensional vector space V over

O

RR. Suppose mr(x) = [T;_, f;, where f; are all irreducible. Then, f; are all distinct.

Proof. Suppose not, then there exists an irreducible polynomial f € R[x] such that f = f; for
more than one i. Let us consider W = ker f"(T), then W is a f(T)-invariant subspace. Note
that f(T) is normal on W and f(T)" = 0 on W. Thus, from Theorem 9, we conclude that

ker £(T) = ker f(T),
which leads to a contradiction. O
Proof of Theorem 2. From Lemma [, we assume that
s r
my(x) = (H(x - Az-)] - []11 (Ge— a7+ bf)] -

From what we have learnt in the theory of Jordan forms,

V= [@ ker (T - /\i)J @ @ ker (T - a;? + b?)|.
i=1 j=1

For simplicity, we define W; := ker (T - A;) and X := ker ((T - a]-)2 + bJZ) It suffices to show
that for each j, there exists a basis A; such that

GBWIJ'

[Tle]ﬂ =D
]

where

This follows from Lemma . O

2.6 Applications of spectral theory of normal operators

This subsection is mainly deal with two topics:
1. Structure of orthogonal (unitary) operators.
2. Singular value decomposition (SVD).

In this subsection, we assume that V is a finite dimensional inner product space unless oth-
erwise stated.
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Definition 43 (Unitary groups and orthogonal groups). Let V be a finite dimensional inner
product space over F.

1. If F = C, we define the unitary group
UV)={T: Vo>V |T-T"=T"T=1dy}.
2. If F = IR, we define the orthogonal group
OV)={T: Vo>V |T-T"=T"T=1dy}.
We also define unitary groups and orthogonal groups by matrices. We write:
1. O,(R) = {A € M,(R) : A- A' = I,,} is the orthogonal group.
2. U,(R) ={AeM,(C):A- A" =1,} is the unitary group.

Note that U,(IR) contains some complex matrices although it contains R in its “name”.
We now focus on orthogonal groups.

Definition 44 (Reflection). Let T : V — V be a linear operator. T is a reflection if there exists
az € V with ||z|| =1 such that

T(x)=x—-2-Proj (x) =x—-2-(x,2) -z, forallx e V.
We also say that T is the reflection over the hyperplane H = (R - z)*.
Remark. Suppose T is a reflection. Let A be an orthonormal basis of ‘H. Then, A’ = {z} U A

[Tl = (_01 I(il)'

is an orthonormal basis such that

This means that there exists a matrix P € O,(IR), such that

-1
pree =" 0|,
0 In—l

where 8 is the standard basis. Hence, we can define reflection on M,,(R).

Definition 45. Let A € M,(IR) be a real matrix. A is a reflection if (and only if) there exist a
P € O,,(R) such that

-1 0
P'AP = .
0 In—l

Lemma 8.

1. If A € O,(R) and A € Ris an eigenvalue of A, then A = +1.

2. If Ae U,(R) and A € C is an eigenvalue of A, then |A| =1.
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Proof. Let V = F". (Fis R or C.) Define the standard inner product (-, -) on V, namely,
(x,y) =y - x, x,y are column vectors.

Then, A € O,(R) (A € U,(R)) is a unitary operator on (V,(, )). If A € F is an eigenvalue of
A, then there exists v € V' \ {0} such that: Av = Av

(v,0) = (Av, Av) = (A -0, -0) = A+ A+ (v,0).
This implies A - A = 1. O
Theorem 46 (Cartan-Dieudonné Theorem). For every A € O,,(R), A is a product of reflections.

Proof. From Theorem B2, we know that A € O,,(IR) can be written in the form

@(Ai) o éBDj , (5)
i=1 =1

where D]- is

b
4% Y , for some a,b; € R, b; # 0.
b aj

Lemma § asserts that A; = £1 in (f). It is easy to see that (by Definition #5) if m < n and
X € 0,,(R) is a reflection, then so is

X 0

0 Lim)

Thus, it suffices to show that each D; is a product of reflections on R". Since each D; € O5(R),
we know that

t
D]D] = Iz.

Therefore, ajz + b]2 =1, let 0 € [0,27) such that a; =cost and b]- = sin 6. Note that

cos@ —sin@) (cosO sin6 1 0
sin@ cos® ) |\sin® -cos@) (0 -1)
We conclude that D; is a product of two reflections. O

Next, we are going to discuss the singular value decomposition. We first define the
singular decomposition of a matrix A € U, (R).

Definition 47 (Singular value decomposition (5.V.D.)). Let A € M,,,,(C). If there exist P €
U,(R) and Q € U,,,(R) such that

z Ox(n— X0
Q*-A-P:( ) ]=[ )EMan(C),
O(m—r)xr O(m—r)x(n—r) 00

where O is the zero matrix in M,,_)xu-(C) and Z € M,(C) is the diagonal matrix
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with o; € Rand 01 > 0, > --- > 0,. Then,
Lo
A=Q- - P

is called the singular value decomposition.

Theorem 48 (Singular value decomposition). Let A € M,,,,,(C), then the singular value decom-
position of A exists.

It is equivalent to prove the following theorem. Although it is not quite trivial that the
following theorem implies the singular value decomposition theorem, it is annoying to write
it properly, so we omit the details here.

Theorem 49 (Linear transformation version). Let V, W be two finite dimensional inner prod-
uct spaces over F (R or C) and let T : V. — W be a linear transformation. Then, there exist an
orthonormal basis B = {v,v,, ..., v,} of V such that

1. {T(v1), T(v,), ..., T(v,)} is orthogonal.

2. {T(vr+1)/ T(vr+2)/ e T(Z)n)} =0.

Proof. By Theorem 2§, the adjoint T* of T exists. Consider S ;== T*oT : V — V. Then S is
self-adjoint. Applying the spectral theory for self-adjoint operators (Theorem f]| for F = C
or Theorem A( for F = C), we can find an orthonormal basis 8 = {vq,v,, ..., v,} consisting of
eigevectors of S. Let A; be the eigenvalue of v; (with respect to the transformation S), then

<T(vi), T(v; > = <T*T(vi), vj> = <S(vi), vj> = A; <vi, vj>.
This gives
T(v;) L T(v)), ifi #j.
{IlT(vi)llz = A;, for all i.
This proves the theorem. O

Singular value decomposition generalize the definition of “inverse matrix”. We can de-
fine the pseudo inverse or the Moore-Penrose inverse.

Definition 50 (Pseudo inverse or Moore-Penrose inverse). Let A € M,,,(C). Let the defini-
tion of P and Q be the same as in Definition 7. Then, the Moore-Penrose inverse is defined

At =p. (Z_l 0] . Q*-

as

0 O

We also can define Moore-Penrose inverse of linear transformation.

Definition 51 (Intrinsic definition of Moore-Penrose inverse). Let V, W be two finite dimen-
sional inner product spaces and let T : V' — W be a linear transformation. Then, the Moore-
Penrose inverse is the linear transformation T : W — V defined by:

THw) = (Tl eer T)L)‘l o Proj,_.(w).
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Two definitions of the Moore-Penrose inverse aggee with each other. The Moore-Penrose

inverse is invented to solve system linear equations.

Theorem 52. Let V, W be two finite dimensioal inner product space and let T : V. — W. Given
b € W. Then, T(x) = b has a solution in V if and only if

b=T-TH). (6)
In addition, in this case, x is a solution if and only if
x=THb) + (Idy - T - T)(z), for somez € V.
Proof. T(x) = b has a solution in V is equivalent to
belml < ProjImT(b) =b
&  ToT'(b) = b, by Definition p1.

To see the second assertion of the theorem, it suffices to show:

ker T =Im(Idy - T* - T).
However, it follows from the definition that T* o T(v) = Proj (kerT) . (©). Thus,

(Idy - Tt T) = Proj,__,.
This proves the theorem. O

However, the equation is not always has a solution. In general, T'(b) is the best approx-
imation of solutions of T(x) = b in the following sense:

o TT — = i —
|7 > T(6) = bf| = min I T(x) - bl

Theorem 53. Let V, W be two finite dimensional inner product space and let T : V. — W be a linear
transformation. Given b € W. Then, T'(b) is the best approximation of solutions of T(x) = b.

Proof. Since T - T* = Proj, ., we have (T - T*(b) - b) € (ImT)". Thus,
IT) = b = ||T(x) = T - TH) + T - TH(b) - b]”
=t -T- T @) +|T- T) - |
> |- Ty - .
The equality holds if T(x) = T - T*(b). O

2.7 Bilinear forms

In the subsection, unless otherwise stated, we assume F is one of the following fields: Q,
R, C, or the finite field le, and let V be a finite dimensional vector space over F.

Definition 54. Let F be a field. Let

E=meN:n-x=0, forall x € F}.
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Then, the characteristic of F is defined as:

minZ [if & # @
char (F) = 0

, otherwise

Definition 55 (Bilinear form). Let V be a vector space over F. Then, a bilinear form B is a
function

B:VXV —>F

such that B is component-wise linear. That is, B is a linear function if we fix one variable.
Thus, the inner product on a vector space over R is a bilinear form. If B is a bilinear form
on a finite dimensional vector space V, then it induce two linear maps from V to V.
lg: V-V
v - Ig(v)(w) = B(v,w), forallw € V
rg: Vo VY
v — rg(v)(w) = B(w,v), forallw e V
Conversely, given a linear transformation f: V — VY, f induces two bilinear forms:
Blv,w) = f(0)(w)
Bj(0,0) = f(w)(v)
This explains there is a bijection between
{all bilinear forms B: V X V — F} ~ Homg(V, VV).
We now fix a basis 8 = {vq, vy, ..., v,} of V. We get an isomorphism
{all bilinear forms B: V X V — F} «— M,,(F)
B« Qpg= (B(vi, v]-))'

Similar to what we have shown in the theory of inner product space, if we change the basis
to A, then

Qpa=P-Qpg-P,

where P is the matrix sends 8 to A.

Recall that we have defined the (external) direct sum of two vector spaces in Definition
P0. For two vector spaces V, W with bilinear forms B,, B, respectively, we can defined a
bilinear form B on V & W, defined by

B ((v1, w1), (02, wy)) = By(v1,07) + By (wy, wy),

and we often write B = B, ® B,,. This definition of the direct sum of bilinear forms agrees
with the definition of internal direct sum in the following sense:
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Let (V, B) be a vector space with a bilinear form. W; and W, are subspaces of
V such that W; @ W, = V. Then,

B = By, ®Bly,,
if

B(wl,wZ) =0, for all wq € Wl and Wy € Wz.

. v

Hence, this direct sum is often called orthogonal sum. Next, we are going to define the
concept of radical.

Definition 56 (Radical). Let B: V X V — F be a bilinear form. Define

rad; (V) ={v eV :B(v,w) =0, for allw € V}
radg (V) ={ve V:B(w,v) =0, for all w € V}

Definition 57 (Non-degenerate). A bilinear form is non-degenerate if rady (V) = {0}.
In fact, the following three statements are equivalent:
1. rady (V) = {0}.
2. rad; (V) = {0}.
3. detQp # 0.

Definition 58 (Alternating and symmetric bilinear forms). Let B : V X V' — F be a bilinear
form.

1. Bis alternating if B(v, w) = -B(w, v), for allv,w € V.
2. Bis symmetric if B(v, w) = B(w, v), for allv,w € V.

We first discuss the alternating form. Now, suppose B is non-degenerate and alternating.
Let A = {vy,0,, ...,v,} be a basis of V and let Qp = (B(vi, vj)) be the matrix attached to A.
Then,

If a matrix A € M,,(F) satisfied A' = —A, then it is called skew-symmetric. Next, we want
to find a basis A such that the matrix ()p 4 is as simple as possible.

Definition 59 (Symplectic basis). A basis {ey, ey, ..., e, f1, f2, ..., f;} (dim V = 2r) of V is called
a symplectic basis for B if

1. B(e;, ;) = B(fi, f;) = 0, for all i, j.
2. B(ei,f]') = O, ifi # ]

3. B(ei,fi) = O, for all i.
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In other words, if A is a symplectic basis, then

O, Ir]

Qp o =
o

where O,, I, € M,(F) are the zero matrix and the identity matrix, respectively.

Theorem 60. Assume char(F) # 2. If V is equipped with a non-degenerate and alternating form B,
then dim V is even and V' has a symplectic basis.

Proof. B is alternating and char(F) # 2,so forany v € V,
B(v,v) = -B(v,v) = B(v,v) =

Lete; € V' \ {0}. Choose f; such that B(e;, f1) = 1. (This could be done because B is non-
degenerate.) Let W = Fe; ® Ff1 = span_{e;, f1}. We define W' as

WL :={veV:B(,w) =0, forallw e W}.

We claim V = W @& W1 is an internal direct sum as vector space with bilinear form. To
see this, it suffices to show that V = W @ W+ is an internal direct sum as vector space.
("B(W,W1) =0.)

1. W and W+ is linearly independent.
It is equivalent to prove WN W+ = {0}. Letv € WNW+. Then, v = a-e; +b- f; for some
a,bePF.

veWL = B(v,e;)=a=0;, B(v,e)=b=0.
2. W and W+ generate V.
It is equivalent to prove for each v € V, there exist a,b € F such that
(v-a-e;—b-f)e W
Some simple calculations show that
a=B(v, f1), b=-B(ve),
satisfies the condition.

Thus, (V,B) = (W, Bl,y) @ (W, Bl ). Note that BJ,,, is a non-degenerate (why?) and alter-
nating form. By induction, dim W' = 2r — 2 for some r € N, and W+ has a symplectic basis
lex,es, ..., e, f2, f3, ..., f+} for Bl . We conclude that dim V' = 2r and {ey, ey, ..., €, f1, f2, -, f /)
isa syrnplectlc basis for (V, B). O

Now, we discuss the non-degenerate symmetric form on V.

Theorem 61. Assume char(F) # 2. If V is equipped with a non-degenerate and symmetric form B,
then there exist a basis A = {vy,v,, ..., v,} of V such that

B(v;, v)), if i # j.
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In other words,
aq
as
Qpa =
ai’l

is a diagonal matrix where a; = B(v;, v;). Note that a; # 0 since B is non-degenerate.

Proof. We claim that there exists v € V'\ {0} such that B(v, v) # 0. If such v does not exist, then
2B(v,w) = B(v + w,v + w) — B(v,v) — B(w,w) =0, forallv,w € V.

Since char(F) # 2, we have B(v, w) = 0 for all v, w € V. Therefore, there exists v; € V'\ {0} such
that B(vy,v1) # 0. Let W = Fo; and let

WL :={veV:B(v,v;) =0)}.
Then, (V,B) = (W, Bl,y) @ (W+, B|,,,1) and we can proceed by induction. O

Next, we can classify all symmetric bilinear forms on finite dimensional vector space
over R. Let V be a real vector space with a symmetric bilinear form B. Suppose B is non-
degenerate, then by Theorem p1|, there is a basis A = {v;,v,, ..., v,} such that

aq

ap

Qpa = (a; #0.)

Replacing A = {vy, 0y, ..., v,,} with A’

{ 01 (%)} Op }
Vial Viaol” ™ Alaal )’
then

sgn(a;)

QB,}{’ — Sgn(llz)

sgn(a,)
Thus, we can define the signature of a non-degenerate symmetric bilinear form by count-
ing the positive and negative elements on the diagonal matrix Qp 4.

Definition 62 (Signature). If B is a non-degenerate symmetric bilinear form on a vector space
V over R, then define the signature (r,s) of V so that

1. r = #{i : sgn(a;) = 1}.
2. s =#{i:sgn(a;) = -1}.

We have r + s = dim V since B is non-degenerate.
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If B is degenerate (and symmetric), we also can define its signature. Note thatrad; (V) =
radg (V) (B is symmetric.) Then, V/rad (V) is a vector space, and induced a bilinear form B
from B defined by

B([v1], [05]) = B(vy,vy).

It is easy to see that B is well-defined and one can check that B is a non-degenerate symmetric
bilinear form. We define the signature of B to be the signature of B.

Theorem 63 (Sylvester’s Law of Inertia). Non-degenerate symmetric bilinear forms over finite
dimensional real vector spaces are completely determined by their signature. That is, there exists a
bijection preserving the bilinear form structure if two spaces have the same signature. In other words,
signature is a well-defined invariant for V up to isometries.

Remark.
1. Theorem B3 is a corollary of Theorem [/2, we will not give the proof here.
2. The non-degenerate symmetric bilinear form B is positive definite (inner product) if

the signature of B is (dim V, 0).

2.8 Quadratic forms and Witt decomposition

In this subsection, we assume F is one of the fields: Q, R, C, and IFP (p #2). Let Vbea
finite dimensional vector space over F.

Definition 64. A quadratic form Q : V — F is a function on V such that
1. Q(av) = a?*Q(v).
2. The map By : V XV — F defined by
() = Qlx +y) - Q) - Qy)
is a bilinear form.

This bilinear form By, is called the bilinear form attached to Q.

In fact, we have a bijection between symmetric bilinear forms and quadratic forms. If B
is a symmetric bilinear form, then

Q00 = 3806,

is a quadratic form. Similarly, if Q is a quadratic form, then B, define in the Definition p4
is a symmetric bilinear form. Moreover, if dimp V' = n, then there is a bijection between all
quadratic forms and all homogeneous polynomial F[xy, x5, ..., x,,] with degree 2.

Let A = {vy,0,, ...,v,,} be a basis of V, then

n n n 1 A n n
Q Z a;0; | = Z Z EaiBQ(vl-, vj)a; Z Z cijxiX; € F[xq,Xp, ., X,]-



The polynomial on the right side is called the polynomial attached to Q, and denote it by
fo- Thus, we can study the property of quadratic forms and convert it to the language of
polynomials or bilinear forms.

Definition 65. A quadratic space is a vector space V equipped with a quadratic form Q (or
a symmetric bilinear form, because of the bijection we just demonstrated.)

Definition 66 (Isometric and isometry). Let (V1, Q) and (V,, Q,) be two quadratic spaces.
We say V; and V, are isometric if V7 is isomorphic to V; as a quadratic space. Namely, there
exists a isomorphism T : V| — V; as vector spaces such that

Qy(T(v)) = Qq(v), forall v € V.

Such isomorphism T is called an isometry.

The quadratic space is kind of like a generalization of inner product spaces. Here we
show an example of isometry. Let (V,Q) be a quadratic space. Let vy € V with Q(vy) # 0.

Define
T:V->V
2BQ(X/ UO)
XX — ————0,
Bo (v, vp)
where B, is the bilinear form associated with the quadratic form Q. We claim that T is an
isometry. Note that

2B (x,
QT(x)) = Q- %vw
3 ZBQ(X, UO) ZBQ(.X', Uo) 2
= Bg(x, _WUO) +Qx) + (—BQ(UO, Uo)) Q(vo)
2B(x, vp) 2Bg(x, vg) * 1
B _BQ(00, Vo) Bolx, 7o) + Q) + (BQ(UOIUO)) . EBQ(UO, %)
= Q)

holds for all x € V. T is like the reflection define in inner product spaces. We call T the
reflection along the hyperplane orthogonal to vy with respect to the quadratic form Q. Also,
we found that Q(vy) is an important property. so we give the following definitions.

Definition 67. Given a quadratic space (V, Q). Define the following terminologies.
1. V is non-degenerate if the bilinear form B, associated with Q is non-degenerate.
2. A vector v € V is isotropic if Q(v) = 0.
3. A vector v € V is anisotropic if Q(v) # 0.
4. A quadratic space is isotropic if V is non-degenerate and contains an isotropic vector.

5. A quadratic space is anisotropic if V every non-zero vector in V is anisotropic.
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6. A subspace W C V is totally isotropic if Q| ,,, = 0.

Definition 68 (Hyperbolic plane). A 2-dimensional quadratic space H is called a hyperbolic
plane if f5(x1,x2) = x1x, for a suitable choice of basis. (Recall that f( is the polynomial
attached to Q.) In other words, there exists a basis {v;, v,} such that

01
(BQ(vi’ Uf)) = (1 OJ'

Theorem 69. Let V be a non-degenerate quadratic space. Let U C V be a totally isotropic subspace
with a basis {uy, uy, ..., uy,}. Then, there exists a totally isotropic subspace U’ = span{uy, uy, ..., iy}
such that

1 ifi=]

0 , otherwise '

B(u;, u]f) = {

Proof. We prove by induction on dimp U = m. If m =1, U = F-u;. Since V is non-degenerate,
By is non-degenerate. Thus, there exists a vector w € V such that By(u;, w) = 1. Note that
w & F - uy, otherwise Bo(uy, w) = 0. Let uj = w + a - uy, we claim that there is an a € F such
that Q(u}) = 0. (Undetermined coefficient method.) Then,

Quy) = Q@ + a - uy) = Bo(w, a - u1) + Qw) + Q(q) = a + Q(w).

Hence, u] = w — Q(w)u, satisfies the requirement.

Now, suppose the assertion is true for some m = k € IN. Assumem = k+1 > 1. Let
W = spanF{uz, us, ..., Uy} C U C V be a totally isotropic subspace. Define WL =peV:
Bo(v,w) = 0, forallw € W}. Then, F - u; € W is an totally isotropic subspace. Note that
QlyL is non-degenerate (otherwise Q would be degenerate). Thus, by the previous step,
there exists u} € W+ such that H; := spanF{ul, u} is a hyperbolic plane and By(uq, u7) = 1.

Since H; ¢ Wi, we have W ¢ H{, dimW < k, and Qly Lis non-degenerate. By the
induction hypothesis, there exists a totally isotropic subspace spanp{ué, us, ..., Uy} C Hf such
that

1 ,ifi=j

Bo(u;, u?) = (2<i,j<m).
QT {0 , otherwise J

Then, U’ = span_{u}, uj, ..., uy,} is the desired subspace. O

Corollary. Let V be a non-degenerate quadratic space and U C V be a totally isotropic sub-
space with dimension m. Then, there exists a totally isotropic subspace U’ such that

unt’=1{0}, and Ue U’ ~H™

Theorem 70 (Witt decomposition). Let V' be a quadratic space. Then we have the following or-
thogonal direct sum,

Varad(V)eH"®V,,

whererad (V) is the radical of (V, Bg), H denote a hyperbolic plane, and V is an anisotropic quadratic
space. Note that ~ means isometric. (Recall Definition p§.)
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Proof. Choose any subspace W C V such that V = rad (V) @ W (as vector spaces). Then,
rad (V) L W by the definition of the radical of V. This indicate that V = rad (V) @ W as
quadratic spaces. (Recall the direct sum of vector spaces with bilinear form.) Also, (W, Ql,,)
is non-degenerate. (why?) Thus, we may assume V is non-degenerate, that is rad (V) = {0}.
We prove by induction on dim V. If dim V' =1, then V is anisotropic.

Now, suppose dim V > 1 and V is NOT anisotropic. Then, there exists u € V' \ {0} such
that u is isotropic, namely, Q(u) = 0. From Theorem pY, we obtain that there is u” € V such
that

Bo(u,u’) =1 and u is isotropic.

Hence, H := span_{u,u’} is a hyperbolic plane. We can decompose V into V = H & HL.
Then, we have Q|,;, is non-degenerate and dim H* < dim V, so we can apply the induction
hypothesis on H+. Therefore, HL ~ H""! @ V), where V) is an anisotropic subspace. This
completes the proof. O

Next, we are going to prove that such orthogonal direct sum is unique. We first prove
the following theorem.

Theorem 71 (Witt cancellation Theorem). Let V1, V,, Uy, and U, be finite dimensional quadratic
spaces over F. If Vi ~ V,and V, @ Uy =~ V, & U, are two isometric relation. Then, Uy ~ U, is
isometric.

Proof. We first note that V, ® U, ~ V; & U, ~ V, & U;, thus we may assume V; =V, = V.

Case 1: V is totally isotropic and U; is non-degenerate.
Write T to denote the isometry of V@ Uy to V@ U,. Let A = {vq, ..., v,}, B1 = {uq, ..., u,},
and 8, = {wy, .., w,} be bases of V, U;, and U, respectively. Let the matrices of quadratic
form on V @ U, with respect to T(A) U T(B;) and A L B, be

0 0 00
M; = and M, = respectively.
0 By 0 B,

Here B; is the matrix of the quadratic form of U;. (It is useful here that V is totally isotropic
and the the direct sum is “orthogonal” direct sum.) Since V & U; ~ V @ U,, there is an
invertible matrix P € M,,,,(F) such that

Pt'Mz'P:Ml.

A B
P= ,
where A € M, (F) and D € M,(F), then we have D' - B, - D = B;. Note that we assume U,
or more precisely, the bilinear form that U; equipped with, is non-degenerate, thus B, is

If we write

invertible and so is D. This shows that U; and U, are isometric.

Case 2: V is totally isotropic.
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Write U; = rad (U;) ® W; and U, = rad (U,) ® W,, where W; and W, are non-degenerate
quadratic space. Then,

Vel ~=Vel, = Vérad(U))®W; ~Veérad(U,) & W,
= rad (Ve U,) =Veérad(U;) = Vérad(U,) =rad (Ve U,)
By Case 1, Wy ~ W,. It is obvious that rad (V;) ~ rad (V). Thus we have U; ~ U,.

Case 3: For general V.
We prove by inductiononn = dim V. If n =1, write V = F - v. If v is isotropic, then the
Theorem follows from Case 2. Now, suppose v is anisotropic. Let T denote the isometry of
Fo@® U to Fu @ U,. We have

F(T(w) e T(U;) ~ Fve U,.
By Lemma P, there is an isometry 7 : Fo @ U, — Fv & U, such that
©(T(v)) = v.
It follows that
7o T(U;) = (Fo)l = U,.

Therefore, 7 o T is an isometry of U; to U,. Now, suppose n = dimV > 1, then V = Fo; @
Fu, @ -+ & Fv,, (orthogonal direct sum) with Q(v;) = a; (1 < i < n). This is possible because
of Theorem p1]. It follows that

VEBU1 ~ VEBUZ Sl FUl @(F’Uz@ @F’(Jn@ Ul) ~ F’Ul @(F’Uz@ EBFUH@Uz)
— Fo,®---@Fv,®U; ~Fuo,®---®Fv,, & U,
= U, = U, (by the induction hypothesis).
The discussions above prove the theorem. O

Lemma 9. If x,y € V are two anisotropic vectors in a quadratic space, such that Q(x) = Q(y).
Then there exists an isometry 7 : V — V with 7(x) = y.

Proof.

Case 1: x —y is anisotropic.

Consider © = T,_, the reflection along the hyperplane orthogonal to the vector x - y.
Precisely, we define

Bo(v,x - y)

T(v):v—Z-BQ(x_y,x_y)-(x—y).
Plug in v = x gives
Bo(x,x - y)
= —2' M -
T(x) = x Bo(i— 1, %) (x-y)
_ o Boloyx)-Bolxy) .. _
=x-2 2 (Bo, %)~ Box, ) -y QMW =QW)
=x-(x-y) =y.
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Case 2: x -y is isotropic.

Note that Q(x —y) + Q(x+y) =2 (Q(x) + Q(y)) (By Parallelogram Theorem.) This shows
that —x — y is isotropic if x — y is anisotropic. Let t = T_,_, o -Idy be a composition of two
isometries. Then 7(x) = T_,_,(-x) = y.

The discussions above complete the proof. O
Now, we can prove the following theorem.

Theorem 72 (Uniqueness of Witt Decomposition). Let V be a quadratic space. If
V=rad(V)®H"®V, ~rad (V) H"” ®V},
where Vy and Vy are anisotropic, then m = m’ and Vi ~ V.
Proof. Witt Cancellation Theorem (Theorem [/1]) shows that
H" &V, ~ H" & V).

We claim that m is the dimensional of maximal totally isotropic subspaces of H" @V, this can
be seen from the proof of Theorem [/0. Thus, m = m’ and it follows from Witt Cancellation
Theorem (Theorem [/1)) that Vjy ~ V. O

Recall that in the last subsection, we introduced the concept of signature. There is a
theorem we have not proved yet. Here we have a fast way to prove it. Proof of Theorem p3.
If (V, B) has signature (p,q). Without much loss of generality, we assume p > g. Then, V =~

Hie®l

p—q, Where I, , =R-v; ®---®R-v,_, is an anisotropic space such that

=g =g
Q) xiv) = D a2
i=1 i=1

This shows there is a 1-1 correspondence between signatures and Witt decompositions. This
proves the theorem. O

Theorem 73 (Cartan-Dieudonné Theorem). Let V be a non-degenerate quadratic space with di-
mension n. Let the orthogonal group of V be O(V) = (T : V — V, T is isometry}. Then for each
o € O(V), o is a product of at most n reflections.

In fact we have proved this theorem, when V' is an inner product space over R, then we
can use the spectral theory of inner product space. However, we do not have these tools here,
hence the proof is much harder.

Proof. We first write O(V) = £1 U £, LI X3, where
Xy = {o € O(V) : I anisotropic x € V such that o(x) = x}
Y, ={o € O(V) : I anisotropic x € V such that o(x) — x # 0 and is anisotropic}
Y3 ={o0€O(V):V anisotropic x € V, o(x) — x # 0 and is isotropic}

We will prove by induction onn = dim V. If n = 1 then O(V) = {+1}. Now suppose n > 1.
Leto € O(V).
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Case 1: If 0 € L;, then there exists an anisotropic vector x € V such that o(x) = x. Write
V = Fx @ (Fx)! as orthogonal sum of o-invariant subspace. By induction, Olipyr = 11 T4
for some reflections 7; where r < n — 1. Define the extension 7; of 7; to V by 7;(x) = x and
T:(y) = 7;(y) for y € (Fx)L. Then 7; is a reflection in V and

Case 2: If 0 € L,, then there exists an anisotropic vector x € V such that v = o(x) — x
is non-zero and anisotropic. Then T (o(x)) = x, T, is the reflection along the hyperplane
perpendicular to the vector v. Case 1 gives T, - 0 = 77 --- T,, where r is at most n — 1. Thus,

o=T,- 117,
is a product of at most n reflections.
Case 3: Suppose 0 € L3. We first claim that n > 3 and for all x € V, o(x) - x is isotropic.
The first assertion could be checked by considering the matrix attached to the quadratic form
Q. To see the second assertion, we suppose x € V is an isotropic vector and let y € V be an

anisotropic vector such that B(x,y) = 0 (the existence of y is trivial). Now for all 2 € F we
have Q(x + ay) # 0 hence we obtain

Qo(x +ay) = (x+ay) =0,  Qo(y)-y) =0.
It follows that
Q(o(x) =x)+2a-B(o(y) —y,0(z) —z) =0, foralla € F.
Plugging in a = +1 gives the desired result. Now, put W := Im(1 - 0) = (Idy — 0)V. Then the
result above implies that Qf,, =0 = W c W

We now claim that Q|,,;; and therefore WL c Wil = W. If x € W and y € W then we
have

B(x,0(y) —y) = B(o(x),0(y) — y) — B(o(x) — x,0(y) — y) = B(o(x),0(y) - y)
= B(a(x), 0(y)) — B(o(x),y) = B(x,y) — B(a(x), y)
= —B(x - a(x), a(y)) = 0.

The nondegeneracy of B shows that o(y) = y for all y € WL. By assumption, y must be
isotropic, thatis Q(y) = 0 = Ql;,, = 0. Hence, we now have W = W+. From Theorem p9
we know that there is a totally isotropic subspace W’ C V such that W N W’ = {0} and that

We W ~H™,
for m = dim W. Note that V = W @ W’ since W = W+. Moreover, we have ol = Idy.

We now finally claim that detc = 1. We observe that: for x € W and y € W’, we have

B(xra(]/) _y) = B(xlo(y)) - B(xly) = B(X,O(y)) - B(U(x)/U(y)) =0.

Thus we conclude that o(y) -y € W. Let 8 = {wy, ..., w,,} and B’ = {w], ..., w;,} be bases of W
and W’, respectively.
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Then,

L, *
[G]BuB’:(O I)'

This shows that deto = 1. Let 7 be any reflection. Then 7 - 0 € £; LI X5, since det7 = -1 for
any reflection 7. Thus, 7 - 0 is a product of at most n reflections. Thus, we conclude that o is
a product of at most n + 1 reflections. However, note that deto =1 and dett = -1 for every
reflection 7, hence o is not a product of n + 1 = 2m + 1 reflections. This completes the proof.

]

Remark. In the 2016 video, due to the limited time, only the general steps of the proof are
sketched, and the complete proof is not given. Here, I also refer to this article [[] for the
proof.

3 Applications of Linear Algebra

In this section, we will introduce some applications of linear algebra.

3.1 The number of common zeros of two polynomials
First, we look at the following question. Let f(x), g(x) be two polynomials.
What is the size of #{a € C : f(a) = g(a) = 0}. (Counted with multiplicities)

The solution to this question is answered by Etienne Bézour, a French mathematician.
Actually, I am not pretty sure whether the result is discovered by him, but to prove the re-
sult, we have to introduce a matrix called Bézoutian. We first define v(f, g) to simplify our
notation.

Definition 74. Let f, g € C[x]. Define
v(f,g) = the common roots of f(x) and g(x) counted with multiplicities
= deg (ged (f(x),8())) -

Definition 75 (Bézoutian or Bézout matrix). Let f,g € C[x] be two polynomials and let n =
max{deg f,degg}. Then the Bézoutian B, = (b;j) € M,,(C) is a matrix such that

1
W) - fg) N : n-
f gyx_]]/cyg :;j:zox -bij'y]:(l X X 1)'Bf,g' }:/1

Yy

If we define

then we have

f08W) - f(y)g(x)
xX-y

= V' Brg - V().
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Theorem 76. Let f,g € C[x]. We have

o(f, ) = nullity(By o).

Before proving this theorem, we shall introduce some notations, some lemmas and an

important theorem.

Definition 77. Given

Zax € C[x] and g(x) = be € Clx].

=0

Define the following matrices associated with f(x) (and possibly g(x)).

1.

The Hankel matrix of f(x).
We usually write Hy = (h;;) € M,,(C) to denote it. The entries are defined by:

I ai+]-_1 ,ifi+j—1<7’l
7o , otherwise '
That is,
ap ap ay
as . a4y,
Hf = " a, e M, (O).
Do,
ai’l

. The Toeplitz matrix of f(x).

We usually write Ty = (t;;) € M,,(C) to denote it. The entries are defined by:

b= llj_i ,leS]
; .
/ 0 , otherwise

That is
ap M Ap2 Ay
ap a4y - Oy
Tf = S Mn e C.
ao m
ag

The anti-diagonal matrix.
We usually write Z,, = (z;) € M,,(C) to denote it. The entries are defined by

1 ,ifi+j=n+1
Zi = )
v 0 , otherwise
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That is,

4. The resultant of f and g.
Let n = max{deg f,degg}. We write R¢, = (r;) € M,,(C) to denote the resultant. The

entries are defined by

; ,ifi<nmand0<j-i<n

7’1‘]': b]’—i ,ifi>nand0§]'—i§n.
0

, otherwise

That is,
Ag 4y - 4y ay
g dy - dpq Oy
ag @ o Ay Oy
R = EMZ (C)
18 by by o by by "
bO bl bn—l bn
bO bl : bn—l bn

Remark. In all the above matrices, all “blank” entries represent 0.

From the above definitions, it is easy to see

a, g

A,-1 ay ag M
Z-Hp=\"0 ;2T =

m p-1 An apg m A,

Thus, we have

Theorem 78. Let f, g € C[x]. We have

o(f,g) = nullity(R¢ ).

Proof. Letn := max{deg f, deg g} and let Py be the set of all complex polynomials with degree
less than k. In other words,

P, :={p e C[x] : degp < k}.
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Consider a linear transformation T defined by:
T:P,®P, = Py,
(u,v) — u-f+v-g.

Suppose d(x) = ged ( f(x), g(x)), and we assume that f(x) = h(x) - d(x), g(x) = k(x) - d(x), and
that ged (h(x), k(x)) = 1. Then,

kerT ={(u,v) € P, XP,:u-f+v-g=0}

={(u,v) e P, XP,:u-h+v-k=0}

{(k-a,-h-a):aeC[x]} (. ged(k,h) =1.)

However, note the degree of « is less than degd(x). This indicates that
dimker T = degd(x) = v(f, g).
It suffices to show that dim ker T’ = nullity(R¢ ). It follows from the fact that

[Tlga = Rf,gt/
where 8 is the standard basis of P,, ® P,, and A is the standard basis of P,,,. O

To prove Theorem [/§, it remains to find the relation between R¢, and By .
Lemma 10. Let f, ¢ € C[x] and let n = max{deg f,degg}. Hf, Ty and Z are defined as above.
1. Ty and T, commute, namely, Trp-To=Ty-Ty.
2. Xt=27-X-Z, forall X € M,(C).
3. H-Z-Hy =H, - Z - Hy.
The proof is omitted since it can be done by some simple calculations.
Lemma 11. Let f,g € C[x]. Then, Bfe=Hf -To—H,-Tr.

Proof. We write R = Ry, and B = By . It is easy to see that
X" — yn
r-y

= V(%) - Z- V()

Thus, we have

(" =y f (x)g(yi - jyr (y)g(x)
=V, (Z- (F80) - Fg) - Vo)

_ (mx) -f(x)]t | ( 0 Z) | (f(y) - vn<y>]
V@ -s0) -z 0) lew) - v

Z
=Vpu(x)' - RE- ( OZ 0) R - V,,(y) (by direct computation.)
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On the other hand, we have the left hand side is equal to

(" = y") - V,(x)' - Brg - Vy(w)
=V, (0" (" Brg) - V) = V(x)' - (Brg - v") - Va®)

t 0 0 t O B
=Vau(x) '(B O]-Vzn(y)—Vzn(X) '(0 0)'V2n(y)

vy ) va

Therefore, we conclude that

0 -B 0 Z
=R"- ‘R
B 0 -Z 0
t t
(O B T T ).(o Z).(Tf Z~Hf)
B 0) \Hf-Z Hy-Z) \-Zz 0) \T, Z-H,
(0 -B\_(2:Ts-Z Z-Tg~Z).(Z-Tg Hg)
B 0 Hf-Z Hy-Z ) \-Z-Ty -Hy
0 -B) (0 =

= B=X=H; -T,—H,Ty.
The above deductions have used Lemma [[0. O

Now, we can start proving Theorem /6.
Proof of Theorem [/6. 1t suffices to show that nullity(Rs,) = nullity(By.). Without loss of
generality, we assume that deg f > degg. Hence, a,, # 0 if n = max{deg f, deg g}. Consider

(In O"]-R: I, On)_(Tf ZHf)
Ty ZH; Ty ZH;) \T, ZH,
(T ZH; )
T? + ZHsT, TyZHs+ZHfZH,
_ T¢ ZH; ]
ZB + (ZH, + T)T; (Ty+ ZH,)ZH;

(Recall that B = H;T, — H,T¢ and Lemma E)
_ On In In On
\zB T;+2zH,) \T; ZH;

(0w I B 0,) (L. O
\z T1r+2zH,) \O, 1,) \T; ZH{)

I, O
det (Ti; zzgf) = det(I,) - det(Z - Hy) = det(Z) - det(Hy)

Note that

= (-1)" - det(H;") = (-1)" - (a,)" # 0
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and that
O I O I
det( " " ] = det( " " ]
Z Tf + ZHg Z Tf + ZHg

= det O L - det L H
zZ Ty o, I,
= det(Ty) - det(Ianlz) ‘1#0

Therefore, we conclude that

B
nullity(B) = nullity (O (I)n) = nullity(R¢ ).

n n

Theorem [/§ together with Theorem [/§ are called Jacobi-Darboux Theorem.

Remark. If we are given two polynomials p, g € C[x, y] and we are asked to find all solutions
to the equation

plx,y) =0,  q(x,y)=0.

We can use the following method. Fix y and we obtain two polynomials p, and g, with

coefficients in C. Then, (xy, yo) is a solution if det(B ) =0.

PyoAyo

3.2 Markov chain and the Perron-Frobenius Theorem

We first look at the following question:

r

Suppose there are only two towns in the NTU Country, called the MATH
town and the CSIE town. Suppose in every year, there are s% people from
MATH moving to CSIE; and t% people from CSIE moving to MATH. Assume
that there are no people died and born and no people moving out of the NTU
Country. Then, we want to ask whether the population in these two towns
will become steady.

Let S be the total population of the NTU country, and let p; and gi be the percentage
of the total population in two towns MATH and CSIE, respectively, at the k-th year. Write
U = (Pr, qk)t. Then, we have

- _ 1- So/o to/o v
LT 5% 1-1%) "
Define
1- SO/O to/o
M = ,
( So/o 1- to/o

then we wonder whether the limit

lim v, = lim Moy

k—o0 k—o0
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exists? Above discussions give us the motivation to study Markov chain. The next two defi-
nitions are helpful for us rephrasing the problem.

Definition 79 (Steady state). Given a matrix M € M, (R), a steady state v € R" is an eigen-
vector of M with eigenvalue 1, namely, M - v = v.

Definition 80 (Stochastic matrix). Suppose M € M,(R). M = (m;) is called a stochastic

matrix if all its entries are nonnegative and
n
mi=1,
i=1
forallj € [1,n].
We restate the problem as “Is the steady state of a stochastic matrix exists and is unique up to

a scalar?” In general, the answer is “no”. For instance, let M = [,,, then every state is a steady
state. So, our goal is to find the sufficient condition when the steady state is unique.

Definition 81 (Positive matrix and non-negative matrix). Given a matrix M € M, (RR).

1. Mis positive (non-negative) if all its entries are positive (non-negative). We often write
M>0orM=0.

2. M is regular if M is non-negative and M is positive for some k € N. (The terminology
“Regular” is sometimes confusing.)

Theorem 82. Let M € M,(IR) be a stochastic matrix. If M is reqular then a steady state of M is
unique up to a scalar. In other words, dimker(M - 1,)) = 1.

In fact, there is a more stronger result, however we shall introduce some other termi-
nologies first.

Definition 83 (Spectral radius). Let A € M,,(C) and let A1, A, ..., A; be all the eigenvalues of
A (roots of the characteristic polynomial). The spectral radius of A is defined as

p(A) := max|A.

1<i<s

Hence, we have p(A) > 0.

The stronger result mentioned above is the next theorem, which is proved by Oskar
PerroN (1907) and Georc Frosentus (1912).

Theorem 84 (Perron-Frobenius Theorem). Let A € M,,(R) be a regular matrix. Then, there exists
a unique (up to a scalar) eigenvector v € R" with eigenvalue p(A).

Note that we does not assume p(A) is an eigenvalue. Therefore, this theorem is pretty
strong. Since it requires a lot of work to prove Theorem B4, we shall prove some theorems
and lemmas first, instead.
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Theorem 85 (Gelfond’s formula). Let A € M,,(C). Then,
, 1/k
p(A) = Tim [lA%][ ™.
Although this theorem is regard as a lemma of Theorem B4, we still need to decompose

it into some small problems.

Lemma 12. Let A and B be two similar complex matrices. That is, there exists an invertible
matrix P € M,,(C) such that

A =P 1BP.
Then,
tim [l 4] = 1im 84",
k—o0 n—o00

provided that lim ||Ak||1/k exists.
Proof. Lett =||P||- [P7Y|| = |P- P7|| = 1. Then,
A% = [P~ B" - P < [l - |B¥] - 1Pt = £ - B

Similarly, we have

B <t~ []A%]-
We conclude
Ak < e <
Taking the limit k — oo, we obtain lim ||Ak ||1/k = lim ||Bk ||1/k. O

Proof of Theorem B3 If x is an eigenvector of eigenvalue A, then
|Akx] = A - x] = ||k = 1A
— a4 2 1.
1/k 1/k
We find ||Ak|| > p(A) for all k € IN. It remains to prove that lim ||Ak|| exists and
p(A) 2 Jim |44

From what we have learnt in the theory of Jordan forms and Lemma [[2, we just need to
consider the case when A is of Jordan form. We first consider the case when A is a Jordan
block J,, that is,

A= =A-1I,+ N € M, (O),
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where N = J;. Then,

k (k (K .
k _ i k _ k=ingi — k—inTi ;
AF=(A-1,+N) §:(i)A N E:(,)A Ni  (ifk>n)

i=0 i=0 \!

If we assume k > n, we then have

k (K kmingi (K i k
sl =X ()l < 35 = it peo,
i=0 i=0
where
n = k
pk) = YA
i=0 L
is a polynomial in k. Thus,

1A <A1 pi ¥ = a1,

Estimations above show that the theorem is true when A is a Jordan block. Now, we claim
that if

B
A=B&C= ,

1/k
then ||A|| = max{||B||, [|C||}. This claim proves the theorem, since ||Ak|| converge to maxj <;<s{|A;l}
when

, J; are all Jordan blocks.

Js
We now start proving the claim. Let B € MP(C) and C € Mq(C) and let a = max{||B||, ||C||}.
Observe that for all x € C* and y € C9, we have

B 0
(o C](;] = VIBx + [Cyl” < \Ja2 - (el + [y

Hence, we conclude that
B 0
<a.
0 C

On the other hand, there exist xy € C* and y, € C7 such that

. |Cuo| = 1€ [wo) -

e e
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[Bxo| = 11BIl - [xo

(o cJ(s )= |3)

Then, we have

< IBIl - <|cll-

7
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this proves the theorem. O
Theorem 86. Let A € M, (R) be a positive real matrix. The following statements are true.

1. There is a positive vector u € RY, such that A - u = p(A)u.

2. Ifv € C" is an eigenvector of A with eigenvalue A satisfying |A| = p(A), then A = p(A).

3. The algebraic multiplicities of p(A) is 1.

Proof. Let v € C" be an eigenvector of A with eigenvalue A satisfying |A| = p(A). Write
t t

V= (01 Uy .. zzn) e C"andletw = (lvll lvg| ... |vn|) € RY,. We claim that A-w = p(A)-w.

Note that

n n n
(Aw); = Y azw; = Y, a;[v;| > D] az0] = [(Av)| = Aol = p(A) loi] = p(A)w;.
j:l j=1 j=1

If Aw # p(A)w, then A - Aw > A - p(A)w, that is, all components of A - Aw are strictly greater
than those of A - p(A)w. It is possible to choose € > 0 such that

A-Aw > (1 +e)A- p(Aw.
By induction, we get:
k
Al > ((1+€)p(A)) - Aw, for allk € N.

This implies that
|AF - (Aw)|
| Aw|

contradicting the Gelfond’s formula (Theorem BY). Hence, Aw = p(A)w. However, from

| A%|| = > ((1+ e)p(A))k = A" = a +epa),

the definition of w, we have w > 0, therefore we conclude that w > 0. This proves the first
assertion. To see the second statement, observe that

n n

n
Z |az’jvj| = 2 aj |U,'| = |Ay| = Z a;vj|, for all i.

j=1 =1 =1

This implies all v; have the same argument (principal value), that is, arg(v;) are the same.
Here we have used a cool fact about the complex number.

Letcq,cy, ..., ¢, € C\ {0}. Then
le1+ ca+ -+ + €4l = legl + legl + -+ + eyl

implies ¢y, ¢y, ..., ¢, have the same principal values (arguments).

\

Since all v; have the same principle value, we may assume that v; = r;-exp (i0) (r; € Ry)
foralll <i<n.
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Thus, we have

1 exp 10 a1 a1 -t Ay 1 exp 10 2 aljrj
r, exp 10 a : ry exp 10 . Ayit;
1-1™ .P _ ?1 . e 2 .P = exp (i0) 2.2]]
1, exp i6 Ay o e Agy) \r,expi6 X T

r r 2yt

r r ayir
= A-[?|=4-]2 ) _2] 71 is a real matrix.

T'n Ty Zanjrj

Hence, this shows that A is real, thus proves the second assertion. It remains to prove the
third statement. Since A > 0, A' > 0. We can apply ([]) and (2]) to A" Let x € R%, be an
eigenvector of A' with eigenvalue p(A') = p(A). Consider

X={yeR":x' -y} cR".
Note the following facts:
1. X is an A-invariant subspace. (*'x'- Ay = (Atx)ty = p(A)x'y =0, forall y € X.)
2. wé¢ X. (Recall that v = (7}1 Uy .. Un)t and w = (|U1| [og| ... |vn|)t is an eigenvector
of A with eigenvalue |A| = p(A).)

Thus, R" = X ® R - w. To show the algebraic multiplicity of p(A) is 1, it suffices to show that
there is no eigenvectors in X with eigenvalue p(A). Let y € X with Ay = p(A)y. Then from
the prove of ([[]), it follows that

Ay* = p(A)y', where y; = |y,

We saw that the components of A(y + y*) is either all zeros or all positive (why?). This in-
dicates y* = +y. However, (y*,x) > 0 contradicting the definition of X. This completes the
proof. O

Corollary. Let A € M,,(R) be a regular matrix. Suppose A is positive. Then, The following
statements are true.

1. There is a positive vector u € RY, such that A - u = p(A)u.
2. If v € C" is an eigenvector of A with eigenvalue A satisfying |A| = p(A), then A = p(A).
3. The algebraic multiplicities of p(A) is 1.

Proof. Let Ev(A) be the multiset of all eigenvalues of A in C counted with multiplicity. In
other words,

Ev(A) = the multiset of roots of ch 4(x).

IfEV(A) = {A1, Ay, ..., A}, then Ev(AK) = (A%, A%, .., AX} (from the theory of the Jordan forms).
Hence, p(A¥) = p(A)t. Without loss of generality, we assume that [1;| = p(A), and we will
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write A for A;. By Theorem B8, A¥ € R, and there exists u € R, such that
Aky = Aky,

Let v € C" be an eigenvector of A with eigenvalue A. Then, v is an eigenvector of A% with
eigenvalue A¥. Theorem B asserts that v and u differ a scalar in C. Thus, u is an eigenvector
of A and

Au = Au.

On the left side is a positive vector, so A is a positive real number. ("."p(A) # 0, otherwise
AF = 0 for large enough k.) This proves the first statement.

To see the second statement, let w € C" be an eigenvector of A with eigenvalue u satis-
tying |p| = p(A) = A. Then,

Arw = yfw, |yk| = p(AF).
By (E]) and (B]) of Theorem B§, we have
uh = p(a"),

and w and u differ scalar. This means that w is an eigenvector of A with eigenvalue p(A).
It remains to show the third statement. From |/\k| > |/\i‘| forall 1 < i < n, it follows that
|A| > |A;]. This proves the last assertion. ]

Theorem 8@ and its corollary is actually a stronger result of Theorem B4. This theorem
has a generalization to irreducible matrix. We now formally give the following definition.

Definition 87 (Irreducible matrix). A non-negative matrix is A is irreducible matrix if for
any 1 <1i,j < n, there exist k (depending on i, j) such that

<Akei, ej> >0,
where {ey, ey, ..., e,} is the standard basis of R" and (, -) is the standard inner product on R".
Theorem 88. Let A € M, (R) be an irreducible matrix. Then the following statements are true.
1. There is a positive vector u € RL, such that A - u = p(A)u.
2. The algebraic multiplicities of p(A) is 1.

Remark. This generalization does not claim the following:

Let v € C" be an eigenvector of A with eigenvalue A satisfying [A| = p(A).
Then, A = p(A).

Here gives a counterexample. Let A € M,(IR) be an non-negative matrix defined by:

A= 01 .
10
Note that A is irreducible but NOT regular, however, +1 are both eigenvalues of A.
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Proof of Theorem B§. From the definition of irreducible matrices, for every 1 < i < n and
1 <j < n, there exists k = k(i, j) € N such that

<Ak€1’, €]> > 0.

We now let kg = max;; k(i,j) € N. Then, (A + el,)fo is positive for all € > 0. Let Ev(A) =
{A1, Ay, ..., A} be the sorted multiset of eigenvalues of A, that is, we assume

p(A) = Ml = Ao = - = A > [Agq] 2 - 2 A,
We claim that there exists an € > 0 being small enough such that
A, + €l = p(A+el,) and |A,| = p(A), forsomel <r <s.

We show that all € in the interval ((I/\SI - |/\S+1|)/4) satisfies the requirement. Let1 < p < sand
s < g < nbe two integers. Then,

A, +e| = |A|—e> || +e> A, +€]

This means p(A + €l,,) = |A,| for some r € [1,s].
By Theorem B¢ and its corollary, A, + € € R, and there exists an u € RY;, such that

A+el)u=WN, +e)u = Au=Au.

Au is a non-negative vector and |A,| = p(A) # 0, thus A, = p(A) € R.. This proves the first
assertion.

To see the second assertion, suppose

cha(x) = (x=4,) [Jx - 2.

i#r
Then,

chiaser,y®) = (= A, —e) [J(x-7i —e).
i#r

By the corollary of Theorem B again, (x — A; —€) # (x — A, —¢€) for all i # r. This completes
the proof. 0

Definition 89 (Perron-Frobenius vector). Let A € M,,(R) be an irreducible matrix. Let v4 be
the unique vector in R?; such that

Avy = p(A)vy and 2 v; =1,
i=1

where v; are the i-th component. v, is called the Perron-Frobenius vector, or briefly, P-F
vector.

3.3 Directed Graphs with Weights and Matrices

Definition 90 (Directed graphs with weights). A (directed) graph is an ordered pair G =
(V,E), where V is called the vertex set and E is called the set of edges. The vertex set V =
{v, : @ € A} consists of some vertices, in the subsection, we assume that |V] is finite. The set
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of edges E consists of some pairs (v;,v)) (i,j € A), meaning that there is an edge from v; to
v;. A directed graph with weights means that we require the set of edges E consists of some
triples (v;, v}, w;;), meaning that there is an edge from v; to v; with weight w;; € R.0.

Note that for each directed graph with weights, we can associate it with a non-negative
matrix by the following

7

Suppose |V| = n. Let Ag = (4;) € M,,(R) be a non-negative matrix defined by

_ wji ’ if (U', (%7 w]l) €E
ai]' = .

0 , otherwise

Then, for each finite directed graph G with weights, we associate it with a non-negative
matrix Ag, the adjacency matrix of G. We also can construct a graph from a given non-
negative matrix. Thus, some properties of the matrix theory can convert to properties of
graphs, and vice versa.

Now let G be an unweighted directed graph, for each vertex, we can define the out-
degree and in-degree as

degout(v) =#weV:(vw)e€E} degm(v) =#weV:(wv)eE}

We can construct a related matrix S = (s;;) € M,(R) corresponding to the transitions in a
Markov chain of given network N (a net work is an unweighted directed graph G), by

1
— ,if (v;,v;) € E
degout(vj) "
Sij =40 ,if (vj,v;) ¢ Ebut deg_ (v;) # 0
1
— , otherwise
n

Then, the just constructed matrix S is a stochastic matrix, but it may not be regular or ir-
reducible. To make S be able to apply Theorem B4, we give the following definition of the
google matrix that makes S become positive.

Definition 91 (Google matrix). Let N be a network (let G be a unweighted directed graph).
The google matrix X attached to the network N (the graph G) is

1
X=aS+(1- a)EB, for some a € (0,1). (7)

In ([), B is defined as the matrix in M,,(R), all of whose elements are 1. Usually, a« = 0.85 is
the best model for simulating how people browse the web page according to the research by
GoogtLE at around 1997.

The Google matrix X is positive and stochastic. We can apply the Perron-Frobenius The-

t
orem (Theorem B4) to X to get a P-F vector vy = (01 Uy .. vn) . Then, we (Google) can
rank web pages in Google search engine results according to the magnitude of v;. However,

how to find vy is a very tricky question. Most of the time, there are a lot of pages to be ranked,
so we must find a quick way to compute vy numerically.
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t
Theorem 92. Let vy = (1/n 1n .. 1/n) € R". Then,

; ko, —
lim X*vy = vy.

k—o0

Proof. For x € R", define
n
ldly = X Il
i=1

t
For any v = (vl,vz, ,vn) € RY, such that Y} v; =1, we have
t
Bo=(11 .. 1).
In this case, we call v a probability vector. Let vy = X*vy (k € N). Consider ||v, — oxlly-

(aS +(1- a)%B)(vk_l - Ux)

llox = oxll; = = (@5) (V-1 = ox)lly ,

1
because v;_; and vy are probability vectors. Define x*) := v, — vx. Then, x**) = o - 5. x®).
Note that

[t = 3 ] < @ 31 3 sy )
i=1 j=1

i=1

NN O] - N B - le®)
=« Esl]|x]| a |x]| o ||x ||1
j=1 i=1 j=1
This implies
k]|, < a* - 2O = ak - |log - vx]], < 2a%.
We obtain
I = 2

]

Corollary. We have ||kao - Z)X” < 2-ak, It is useful when we need to estimate the error
between X*v, and vy.

This method to approximate the exact value of vy is called the power method. We now
consider a more general question. Given a positive stochastic matrix A € M,,(IR) and let v, be
a vector in IR", then we wonder whether the limit lim Ay, exists and what the limit is. The
answer is given by the next theorem.

Theorem 93. Let A be a positive matrix. Let w,v 4 € R" be the P-F vectors of At and A, respectively.
Let v € R" be an arbitrary vector, then

lim( A ) v= (0, w) X
oo \p(A)) T (waw)y Y

where (-, -) is the standard inner product.
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Proof. Recall that in the proof of the Theorem B, we used the fact that
R'=(R-v)@®W (W:=(R-w)l={xeR":(x,w)=0}),

is a direct sum of A-invariant subspace of R". For each v € R", write v = avy + y, where
y € W. Then,

A k A k A k
() === () o-eom = 55) -
k k
A A 1
= \l5t) = =[5 +{= () Heanrt
k
<C- (P:)I(‘XZLV;/)) . |y| (by Gelfond’s formula).

Since p(A) > p(Al,y) (by Theorem 8@), we have
i 7).
im|——=| -v=a-v,4.
k—o0 \ p(A) A
On the other hand, we have
_ (v, w)

- <UA/ w> .
This proves the theorem. O

(v,w) ={avs +y,w) = avy,w) = «a

Remark. This theorem does not hold if A is an irreducible matrix since we use the fact that

If A is positive (non-negative), then p(A) > p(Al,). (W is the orthogonal
complement of R - v,4.)
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