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1 Introduction
Since last semester, I have studied Advanced Calculus in Department of Mathemat-

ics, Tsing Hua University. In the course, Principles of Mathematical Analysis [2] was as-
signed to be our textbook and we learned the definition of the Riemann-Stieltjes inte-
gral in the book. However, the book only introduces the Riemann-Stieltjes integral of
a function 𝑓 with respect to a monotonically increasing function 𝛼. After some discus-
sions with my advisor, I discovered that there is a more general definition of Riemann-
Stieltjes integral, which does not have any requirements on 𝛼. Moreover, I found that
the text Mathematical Analysis [1] written by Apostol, T.M. contains more details con-
cerning the case when 𝛼 is of bounded variation. This gives me the motivation to ex-
plore the properties of functions of bounded variation. In this article, it is separated
into two parts, first of which contains some vital ideas of bounded variation functions.
The remaining part includes some problems provided in the textMathematical Analysis.

2 Propositions of Bounded Variation Functions
In the beginning of this section, we will introduce some concepts of functions of

bounded variation. For brevity and clarity, we should introduce some notations and
terminologies to avoidmisunderstanding. We confine our attention to real-valued func-
tions defined on bounded interval like [𝑎, 𝑏]. Unless otherwise stated, 𝑓, 𝑔, ℎ, … would
stand for such functions mentioned above.

Definition 1 (partitions and refinements). Let [𝑎, 𝑏] be a given bounded interval. A set
of finite points

𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛},

which satisfies

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏,

is called a partition of [𝑎, 𝑏]. We usually write

Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 (𝑖 = 1, … , 𝑛).

A partition 𝑃∗ is called a refinement of 𝑃 if 𝑃∗ ⊃ 𝑃.

Definition 2 (functions of bounded variation). Let 𝑓 be a real-valued function defined
on [𝑎, 𝑏], and let 𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛} be a partition of [𝑎, 𝑏]. Denote

Δ𝑓𝑖 = 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1) (𝑖 = 1, … , 𝑛).
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If there exists a positive number𝑀 such that

sup
𝑛
􏾜
𝑖=1

|Δ𝑓𝑖| ≤ 𝑀,

where the supremum is taken among all partitions of [𝑎, 𝑏], then 𝑓 is said to be of
bounded variation on [𝑎, 𝑏], or briefly speaking, bounded variation function (BV func-
tion).

Now, some results immediately follow from the definition, as shown in the next
two theorems.

Theorem 3. If 𝑓 is monotonic, then 𝑓 is of bounded variation.

Proof. For every partition of [𝑎, 𝑏]we have
⎧⎪⎪⎨
⎪⎪⎩
Δ𝑓𝑖 ≥ 0, if 𝑓 is increasing

Δ𝑓𝑖 ≤ 0, if 𝑓 is decreasing
.

Hence, we get
𝑛
􏾜
𝑖=1

|Δ𝑓𝑖| =
𝑛
􏾜
𝑖=1

|𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| = 􏵵
𝑛
􏾜
𝑖=1

􏿴𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)􏿷􏵵 = |𝑓(𝑏) − 𝑓(𝑎)| .

This completes the proof.

Theorem 4. If 𝑓 is continuous on [𝑎, 𝑏] and if 𝑓′ exists and is bounded in (𝑎, 𝑏), then 𝑓 is of
bounded variation.

Proof. Since 𝑓′ is bounded in (𝑎, 𝑏), there is a positive number𝐴 such that |𝑓′(𝑥)| ≤ 𝐴. For
every partition of [𝑎, 𝑏], it follows by Mean Value Theorem that there exist 𝑡𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖),
such that 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1) = 𝑓′(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1). This gives

|Δ𝑓𝑖| ≤ 𝐴(𝑥𝑖 − 𝑥𝑖−1),

and
𝑛
􏾜
𝑖=1

|Δ𝑓𝑖| ≤ 𝐴(𝑏 − 𝑎),

which implies 𝑓 is of bounded variation.

In both cases discussed above, we have shown some sufficient conditions for func-
tions to be of bounded variation if the functions feature the requirements. Next theorem
demonstrates what necessary condition needs to be satisfied if a function is of bounded
variation.

Theorem 5. If 𝑓 is a bounded variation function, then 𝑓 is bounded.

3



Proof. Since 𝑓 is of bounded variation, there is a positive number𝑀 such that∑ |Δ𝑓𝑖| ≤
𝑀. To show 𝑓 is bounded, we hope there is a positive number 𝐴 such that |𝑓(𝑥)| ≤ 𝐴
holds for every 𝑥 ∈ [𝑎, 𝑏]. Now, consider partition 𝑃 = {𝑎, 𝑥, 𝑏}(where 𝑎 < 𝑥 ≤ 𝑏), the
hypothesis give us

|𝑓(𝑥) − 𝑓(𝑎)| + |𝑓(𝑏) − 𝑓(𝑥)| ≤ 𝑀.

This implies |𝑓(𝑥) − 𝑓(𝑎)| ≤ 𝑀, and it follows that

|𝑓(𝑥)| ≤ |𝑓(𝑎)| + 𝑀. (1)

Note that (1) also holds for 𝑥 = 𝑎, thus it holds for all 𝑥 ∈ [𝑎, 𝑏].

After being acquainted with some bounded variation functions, we shall proceed
to other more important topics and find characterizations of bounded variation func-
tions. However, we have to introduce “total variation” of a bounded variation function
in order to know more about this kind of functions.

Definition 6 (total variation). Let 𝑓 be a bounded variation function on [𝑎, 𝑏], and let 𝑃
be a partition of [𝑎, 𝑏]. We write

𝑆(𝑓; 𝑃) =
𝑛
􏾜
𝑖=1

|Δ𝑓𝑖| .

The number

𝑉𝑓(𝑎, 𝑏) = sup 􏿺𝑆(𝑓; 𝑃) ∶ 𝑃 is a partition of [𝑎, 𝑏]􏿽

is called the total variation of 𝑓 on the interval [𝑎, 𝑏]. Sometimes, the notation will be
shortened to 𝑉𝑓 when there is no ambiguity.

It is worth to note that 𝑉𝑓 must be finite, since 𝑓 is of bounded variation. In the
following discussions, we are going to study some properties of total variation as a
function of 𝑓, in other words, we study how does 𝑉𝑓(𝑎, 𝑏) behave as 𝑓 varies.

Theorem 7. Let 𝑓, 𝑔 be functions of bounded variation. Then so are their sum, difference, and
product. Moreover, we have

𝑉𝑓±𝑔 ≤ 𝑉𝑓 + 𝑉𝑔 and 𝑉𝑓⋅𝑔 ≤ 􏿎𝑔􏿎sup ⋅ 𝑉𝑓 + 􏿎𝑓􏿎sup ⋅ 𝑉𝑔,

where

􏿎𝜙􏿎sup = sup
𝑥∈[𝑎,𝑏]

|𝜙(𝑥)| ,

for 𝜙 = 𝑓, 𝑔.
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Proof. Let a partition 𝑃 of [𝑎, 𝑏] be given. Note that
𝑛
􏾜
𝑖=1

|(𝑓(𝑥𝑖) ± 𝑔(𝑥𝑖)) − (𝑓(𝑥𝑖−1) ± 𝑔(𝑥𝑖−1))|

≤
𝑛
􏾜
𝑖=1

|𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)| +
𝑛
􏾜
𝑖=1

|𝑔(𝑥𝑖) − 𝑔(𝑥𝑖−1)|

≤ 𝑉𝑓 + 𝑉𝑔.

Hence, 𝑉𝑓 + 𝑉𝑔 is an upper bound of∑ |(𝑓(𝑥𝑖) ± 𝑔(𝑥𝑖)) − (𝑓(𝑥𝑖−1) ± 𝑔(𝑥𝑖−1))|. This implies
𝑓±𝑔 are of bounded variation and that 𝑉𝑓±𝑔 ≤ 𝑉𝑓+𝑉𝑔. Now, let ℎ(𝑥) = 𝑓(𝑥) ⋅ 𝑔(𝑥). Then,
we have

|Δℎ𝑖| = |𝑓(𝑥𝑖)𝑔(𝑥𝑖) − 𝑓(𝑥𝑖−1)𝑔(𝑥𝑖−1)|

≤ |𝑓(𝑥𝑖)𝑔(𝑥𝑖) − 𝑓(𝑥𝑖−1)𝑔(𝑥𝑖)| + |𝑓(𝑥𝑖−1)𝑔(𝑥𝑖) − 𝑓(𝑥𝑖−1)𝑔(𝑥𝑖−1)|

≤ 􏿎𝑔􏿎sup ⋅ |Δ𝑓𝑖| + 􏿎𝑓􏿎sup ⋅ |Δ𝑔𝑖|.

We conclude that
𝑛
􏾜
𝑖=1

|Δℎ𝑖| ≤
𝑛
􏾜
𝑖=1

􏿵􏿎𝑔􏿎sup ⋅ |Δ𝑓𝑖| + 􏿎𝑓􏿎sup ⋅ |Δ𝑔𝑖|􏿸 ≤ 􏿎𝑔􏿎sup ⋅ 𝑉𝑓 + 􏿎𝑓􏿎sup ⋅ 𝑉𝑔.

This gives that 􏿎𝑔􏿎sup ⋅ 𝑉𝑓 + 􏿎𝑓􏿎sup ⋅ 𝑉𝑔 is an upper bound of ∑ |Δℎ𝑖| for all partitions.
Therefore, 𝑓 ⋅ 𝑔 is of bounded variation and

𝑉𝑓⋅𝑔 ≤ 􏿎𝑔􏿎sup ⋅ 𝑉𝑓 + 􏿎𝑓􏿎sup ⋅ 𝑉𝑔.

The proof is completed.

Remark. Theorem 7 shows that the set 𝑉 of all functions of bounded variation on [𝑎, 𝑏]
is a linear space. In fact, Theorem 11 (which we will discuss later) indicates that 𝑉 ⊆ 𝑆
if 𝑆 is any linear space which contains all monotonic functions on [𝑎, 𝑏].

Now, we wonder whether 𝑓/𝑔 is of bounded variation provided that both 𝑓 and 𝑔
are of bounded variation. However, if we do further observation on 𝑓/𝑔, it is easy to see
that 𝑓/𝑔might not even bounded. Yet, if we assume that 𝑔 is bounded away from zero,
which literally means that the values of 𝑔 would not be arbitrarily close to 0, then 𝑓/𝑔
is of bounded variation. Now, we write down this observation in a more precise and
mathematical way.

Theorem 8. Let 𝑓 and 𝑔 are of bounded variation. We assume that 𝑔 is bounded away from
zero, that is, there exists a positive number 𝑚 such that 0 < 𝑚 ≤ |𝑔(𝑥)| for all 𝑥 ∈ [𝑎, 𝑏]. Then,
𝑓/𝑔 is of bounded variation. Moreover, we have

𝑉𝑓/𝑔 ≤
𝑉𝑓

𝑚 +
􏿎𝑓􏿎sup𝑉𝑔

𝑚2 .
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Proof. Let a partition 𝑃 of [𝑎, 𝑏] be given and let ℎ(𝑥) = 𝑓(𝑥)/𝑔(𝑥).

|Δℎ𝑖| = |𝑓(𝑥𝑖)𝑔(𝑥𝑖)
− 𝑓(𝑥𝑖−1)
𝑔(𝑥𝑖−1)

| = |𝑓(𝑥𝑖)𝑔(𝑥𝑖−1) − 𝑔(𝑥𝑖)𝑓(𝑥𝑖−1)
𝑔(𝑥𝑖)𝑔(𝑥𝑖−1)

|

≤
􏿴|𝑓(𝑥𝑖)𝑔(𝑥𝑖−1) − 𝑓(𝑥𝑖−1)𝑔(𝑥𝑖−1)| + |𝑓(𝑥𝑖−1)𝑔(𝑥𝑖−1) − 𝑔(𝑥𝑖)𝑓(𝑥𝑖−1)|􏿷

|𝑔(𝑥𝑖)𝑔(𝑥𝑖−1)|

≤ |Δ𝑓𝑖|
|𝑔(𝑥𝑖)|

+
􏿎𝑓􏿎sup |Δ𝑔𝑖|

𝑚2 ≤ |Δ𝑓𝑖|
𝑚 +

􏿎𝑓􏿎sup |Δ𝑔𝑖|

𝑚2 .

This implies

𝑘
􏾜
𝑖=1

|Δℎ𝑖| ≤
𝑘
􏾜
𝑖=1

⎛
⎜⎜⎜⎜⎜⎝
|Δ𝑓𝑖|
𝑚 +

􏿎𝑓􏿎sup |Δ𝑔𝑖|

𝑚2

⎞
⎟⎟⎟⎟⎟⎠ ≤

𝑉𝑓

𝑚 +
􏿎𝑓􏿎sup𝑉𝑔

𝑚2 .

This completes the proof.

Next, we are going to study the properties of total variation𝑉𝑓(𝑎, 𝑥) as a function of
𝑥. Before we start the discussion, we shall prove a theorem which is so called additive
property of total variation.

Theorem 9 (additive property of total variation). Let 𝑓 be of bounded varaition on [𝑎, 𝑏],
and assume that 𝑐 ∈ (𝑎, 𝑏). Then 𝑓 is of bounded variation on [𝑎, 𝑐] and on [𝑐, 𝑏]. Moreover, we
have

𝑉𝑓(𝑎, 𝑏) = 𝑉𝑓(𝑎, 𝑐) + 𝑉𝑓(𝑐, 𝑏).

Proof. Let 𝑃1 and 𝑃2 be partition of [𝑎, 𝑐] and [𝑐, 𝑏], respectively. Note that 𝑃0 = 𝑃1 ∪ 𝑃2
is a partition of [𝑎, 𝑏]. We have

𝑆(𝑓; 𝑃1) + 𝑆(𝑓; 𝑃2) = 𝑆(𝑓; 𝑃0) ≤ 𝑉𝑓(𝑎, 𝑏). (2)

Now, if we fix the partition 𝑃2, then we have

𝑉𝑓(𝑎, 𝑐) ≤ 𝑉𝑓(𝑎, 𝑏) − 𝑆(𝑓; 𝑃2)

by taking supremum on the left hand side. Taking supremum again on the left hand
side of the inequality

𝑆(𝑓; 𝑃2) ≤ 𝑉𝑓(𝑎, 𝑏) − 𝑉𝑓(𝑎, 𝑐)

gives the conclusion that

𝑉𝑓(𝑎, 𝑐) + 𝑉𝑓(𝑐, 𝑏) ≤ 𝑉𝑓(𝑎, 𝑏).

Note that for every partition 𝑃 of [𝑎, 𝑏], we have 𝑆(𝑓; 𝑃) ≤ 𝑆(𝑓; 𝑃′), where 𝑃′ = 𝑃∪{𝑐}.
Let 𝑃1 = 𝑃′ ∩ [𝑎, 𝑐] and let 𝑃2 = 𝑃′ ∩ [𝑐, 𝑏]. Then,

𝑆(𝑓; 𝑃) ≤ 𝑆(𝑓; 𝑃′) = 𝑆(𝑓; 𝑃1) + 𝑆(𝑓; 𝑃2) ≤ 𝑉𝑓(𝑎, 𝑐) + 𝑉𝑓(𝑐, 𝑏).
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Thus, 𝑉𝑓(𝑎, 𝑐) +𝑉𝑓(𝑐, 𝑏) is an upper bound of 􏿺𝑆(𝑓; 𝑃) ∶ 𝑃 is a partition of [𝑎, 𝑏]􏿽. We con-
clude that 𝑉𝑓(𝑎, 𝑐) + 𝑉𝑓(𝑐, 𝑏) ≥ 𝑉𝑓(𝑎, 𝑏). This completes the proof.

Theorem 10. Let 𝑓 be a function of bounded variation on [𝑎, 𝑏], and let 𝑉(𝑥) denotes the func-
tion𝑉𝑓(𝑎, 𝑥). (𝑉𝑓(𝑎, 𝑎) is defined to be 0.) Then, both𝑉 and𝑉−𝑓 are monotonically increasing.

Proof. If 𝑎 ≤ 𝑥 < 𝑦 ≤ 𝑏, then Theorem 9 gives 𝑉𝑓(𝑎, 𝑥) + 𝑉𝑓(𝑥, 𝑦) = 𝑉𝑓(𝑎, 𝑦). This implies
𝑉(𝑦) − 𝑉(𝑥) = 𝑉𝑓(𝑥, 𝑦) ≥ 0, and therefore 𝑉 is increasing. To prove 𝑉 − 𝑓 is increasing,
let 𝐷(𝑥) = 𝑉(𝑥) − 𝑓(𝑥) on [𝑎, 𝑏]. If 𝑎 ≤ 𝑥 < 𝑦 ≤ 𝑏, then

𝐷(𝑦) − 𝐷(𝑥) = (𝑉(𝑦) − 𝑉(𝑥)) − (𝑓(𝑦) − 𝑓(𝑥)) = 𝑉𝑓(𝑥, 𝑦) − (𝑓(𝑦) − 𝑓(𝑥)).

But it follows from the definition of total variation that 𝑉𝑓(𝑥, 𝑦) ≥ 𝑓(𝑦) − 𝑓(𝑥). Thus, we
conclude that 𝐷(𝑦) ≥ 𝐷(𝑥) and 𝐷 is increasing.

Theorem 10 suggests what sufficient and necessary conditions need to be met for
a function to be a bounded variation function.

Theorem 11. Let 𝑓 be a function defined on [𝑎, 𝑏]. Then, 𝑓 is of bounded variation if and only
if 𝑓 can be expressed as the difference of two increasing functions.

Proof. If 𝑓 is of bounded variation, then both𝑉 and𝐷 = 𝑉−𝑓 are increasing (from The-
orem 10). We have 𝑓 = 𝑉 −𝐷 are the difference of two increasing function. Conversely,
if 𝑓 can be expressed as the difference of two increasing functions, then it follows from
Theorem 3 and Theorem 7 that 𝑓 is of bounded variation.

3 Problems
Here are some problems provided in Apostol, T.M.’s book, most of which attracted

my interest.

Problem 1. A function 𝑓, defined on [𝑎, 𝑏], is said to satisfy a uniform Lipschitz condition of
order 𝛼 > 0 on [𝑎, 𝑏] if there exists a constant𝑀 > 0 such that |𝑓(𝑥) − 𝑓(𝑦)| < 𝑀 |𝑥 − 𝑦|

𝛼
for all

𝑥 and 𝑦 in [𝑎, 𝑏].

1. If 𝑓 is such a function, show that 𝛼 > 1 implies 𝑓 is constant on [𝑎, 𝑏], whereas 𝛼 = 1
implies 𝑓 is of bounded variation.

2. Give an example of a function 𝑓 satisfying a uniform Lipschitz condition of order 𝛼 < 1
on [𝑎, 𝑏] such that 𝑓 is not of bounded variation.

3. Give an example of a function 𝑔 which is of bounded variation on [𝑎, 𝑏] but which satisfies
no uniform Lipschitz condition on [𝑎, 𝑏].
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Solution 1.

1. Suppose 𝑓 is a non-constant function satisfies a uniform Lipschitz condition of
order 𝛼 > 1 on [𝑎, 𝑏]. Since 𝑓 is non-constant, there are two numbers 𝑝 < 𝑞 in
[𝑎, 𝑏] such that 𝑓(𝑝) ≠ 𝑓(𝑞). Let 𝑠 and 𝑡 denote the number |𝑝 − 𝑞| and |𝑓(𝑝) − 𝑓(𝑞)|,
respectively. We consider a finite sequence {𝑥𝑘}𝑛𝑘=0 explicitly defined by 𝑥𝑘 = 𝑝 +
𝑘𝑠/𝑛. The triangle inequality and the hypotheses of a uniform Lipschitz condition
give us

|𝑓(𝑝) − 𝑓(𝑞)| ≤
𝑛
􏾜
𝑘=1

|𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)| ≤
𝑛
􏾜
𝑘=1

𝑀|𝑥𝑘 − 𝑥𝑘−1|
𝛼

⟹ 𝑡 ≤ 𝑛 ⋅ 𝑀 ⋅ 􏿵 𝑠𝑛
􏿸
𝛼
.

The last inequality fails to be truewhenever 𝑛 > (𝑀/𝑡)
1

𝛼−1 ⋅𝑠
𝛼

𝛼−1 . Hence, we conclude
that a function 𝑓 satisfies a uniform Lipschitz condition of order 𝛼 > 1 must be
constant.

Now, let 𝑔 be a function satisfies a uniform Lipschitz condition of order 1, and let
an arbitrary partition 𝑃 be given. Note that

𝑛
􏾜
𝑖=1

|Δ𝑔𝑖| ≤
𝑛
􏾜
𝑖=1

𝑀∗ (𝑥𝑖 − 𝑥𝑖−1) = 𝑀∗(𝑏 − 𝑎),

which indicates 𝑔 is of bounded variation. (𝑀∗ is used for the purpose of dis-
tinguishing itself from 𝑀.) Another approach see the subproblems 1 and 2 in
Problem 2.

2. To solve this problem, we shall first prove some lemmas.

Lemma 1. If 𝑓 is a function defined on two closed intervals 𝐼, 𝐽 with following
properties:

• The intersection of 𝐼 and 𝐽 contains at most 1 point (which implies that the
intersection point must be an endpoint of these intervals, if the intersection
point exist).

• 𝑓(𝐼) ⊂ 𝑓(𝐽).

• 𝑓 satisfies a uniform Lipschitz condition of order 𝛼 on both 𝐼 and 𝐽.

Then, 𝑓 satisfies a uniform Lipschitz condition of order 𝛼 on 𝐼 ∪ 𝐽.

Proof. Since 𝑓 satisfies a uniform Lipschitz condition of order 𝛼 on both 𝐼 and 𝐽,
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there exist𝑀1,𝑀2 such that

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀1|𝑥 − 𝑦|𝛼, for all 𝑥, 𝑦 ∈ 𝐼.

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀2|𝑥 − 𝑦|𝛼, for all 𝑥, 𝑦 ∈ 𝐽.

Now, we claim that |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀|𝑥 − 𝑦|𝛼, for all 𝑥, 𝑦 ∈ 𝐼 ∪ 𝐽, where 𝑀 =
max{𝑀1,𝑀2}. It is easy to see thatwe only need to prove that |𝑓(𝑥)−𝑓(𝑦)| ≤ 𝑀|𝑥−𝑦|𝛼

for all 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝐽. From our hypothesis that 𝑓(𝐼) ⊂ 𝑓(𝐽), there exists 𝑥′ ∈ 𝐽 such
that 𝑓(𝑥) = 𝑓(𝑥′). Note that

|𝑓(𝑥) − 𝑓(𝑦)| = |𝑓(𝑥′) − 𝑓(𝑦)| ≤ 𝑀2|𝑥′ − 𝑦|𝛼 ≤ 𝑀2|𝑥 − 𝑦|𝛼,

the last inequality holds from our first assumption. This proves the lemma.

Lemma 2. If 𝑥, 𝑦 are two distinct numbers in [0, 1], and if 𝛼 ∈ (0, 1), then |𝑥𝛼 −𝑦𝛼| ≤
|𝑥 − 𝑦|𝛼.

This implies that 𝑓(𝑥) = 𝑥𝛼 satisfies a uniform Lipschitz condition of order 𝛼.

Proof. Without loss of generality, we assume that 𝑥 > 𝑦. For every 𝑦 ∈ [0, 1), we
consider the function

𝜙𝑦(𝑥) = (𝑥 − 𝑦)𝛼 − 𝑥𝛼 + 𝑦𝛼 (𝑥 ≥ 𝑦).

It is easy to see that 𝜙𝑦(𝑦) = 0 and that

𝑑𝜙𝑦

𝑑𝑥 = 𝛼(𝑥 − 𝑦)𝛼−1 − 𝛼𝑥𝛼−1 (𝑥 > 𝑦).

Since 𝛼 ∈ (0, 1), we have 𝑑𝜙𝑦(𝑥)/𝑑𝑥 > 0 whenever 𝑥 > 𝑦. Note that 𝜙𝑦(𝑥) is contin-
uous at 𝑦, hence 𝜙𝑦(𝑥) is strictly increasing, we conclude that 𝜙𝑦(𝑥) > 0 for 𝑥 > 𝑦.
This proves the lemma.

Lemma 3. Given 𝜖 > 0. There exists a function 𝑓 defined on [𝑎, 𝑏], such that:

• 𝑓 satisfies a uniform Lipschitz condition of order 𝛼 (0 < 𝛼 < 1).
• 1 ≤ 𝑉𝑓(𝑎, 𝑏) < ∞ and 𝑓(𝑎) = 𝑓(𝑏) = 0.
• There exists a positive number 𝛿 < 𝜖 such that 𝑓([𝑎, 𝑏]) = [0, 𝛿].

Proof. Let 𝑙 = 𝑏 − 𝑎 and let 𝑛 be a positive integer such that

(2𝑛)1−𝛼 ⋅ 𝑙𝛼 ≥ 1 and 􏿶
𝑙
2𝑛􏿹

𝛼

< 𝜖.

Now, we divide [𝑎, 𝑏] into 2𝑛 intervals

𝐼𝑘 = 􏿰𝑎 +
(𝑘 − 1)𝑙
2𝑛 , 𝑎 + 𝑘𝑙

2𝑛􏿳 (𝑘 = 1, 2, … , 2𝑛).
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We define 𝑓 as follows:

𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

􏿶𝑥 − 𝑎 − (𝑚 − 1)𝑙
𝑛 􏿹

𝛼

, if 𝑥 ∈ 𝐼2𝑚−1

􏿶𝑎 +
𝑚𝑙
𝑛 − 𝑥􏿹

𝛼

, if 𝑥 ∈ 𝐼2𝑚

(𝑚 = 1, 2, … , 𝑛).

It is easy to see that 𝑓 is increasing on every interval 𝐼2𝑚−1 and it is decreasing
on every interval 𝐼2𝑚. Moreover, we have 𝑓(𝐼𝑘) = [0, (𝑙/2𝑛)𝛼] (this verify the third
requirement of the function 𝑓) and 𝑓 satisfies a uniform Lipschitz condition of
order 𝛼 on each interval 𝐼𝑘. It follows from Lemma 1 and Lemma 2 that 𝑓 satisfies
a uniform Lipschitz condition of order 𝛼 on [𝑎, 𝑏]. (In fact, we have |𝑓(𝑥) − 𝑓(𝑦)| ≤
|𝑥 − 𝑦|𝛼 from the proof of Lemma 1.) This completes the proof.

After proving these lemmas, we can begin to prove the main problem. We con-
struct a function 𝑓 defined on [0, 1], satisfying following properties:

(a) 𝑓(0) = 0 and 𝑓(1/𝑛) = 0, for all 𝑛 ∈ ℕ.

(b) |𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑥 − 𝑦|𝛼, for all 𝑥, 𝑦 ∈ [1/(𝑛 + 1), 1/𝑛].

(c) 𝑉𝑓(1/(𝑛 + 1), 1/𝑛) > 1, for all 𝑛 ∈ ℕ.

(d) 𝑓([1/(𝑛 + 2), 1/(𝑛 + 1)]) ⊂ 𝑓([1/(𝑛 + 1), 1/𝑛]).

This is possible by Lemma 3. We claim that 𝑓 satisfies a uniform Lipschitz con-
dition of order 𝛼 on [0, 1] but is not of bounded variation. If 𝑓 is of bounded
variation, then it follows from Theorem 9 that

𝑉𝑓(0, 1) = 𝑉𝑓 􏿶0,
1
𝑛􏿹 + 𝑉𝑓 􏿶

1
𝑛, 1􏿹 > 𝑛 − 1 (𝑛 ∈ ℕ).

It contradicts the assumption that 𝑉𝑓(0, 1) is bounded. From the construction of
𝑓 and Lemma 1, we have

|𝑓(𝑥) − 𝑓(𝑦)| < |𝑥 − 𝑦|𝛼, for all 𝑥, 𝑦 ∈ (0, 1].

We also have |𝑓(𝑥)| ≤ 𝑥𝛼. (It is easy to verify the construction in Lemma 3.) We
conclude that 𝑓 satisfies a uniform Lipschitz condition of order 𝛼 on [0, 1]. This
shows 𝑓 meets the requirements for the problem.

3. Define 𝑔 ∶ [0, 𝑒−1] → [0, 1] as:

𝑔(𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
√

−1
ln 𝑥 , if 𝑥 ∈ (0, 𝑒−1]

0 , if 𝑥 = 0
.
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Now, note that the function 𝑔 is continuous and monotonic, we conclude that 𝑔
is of bounded variation from Theorem 3. Suppose 𝑔 satisfies a uniform Lipschitz
condition on [0, 𝑒−1] of order 0 < 𝛼 ≤ 1. Then, there exists 𝑀 > 0 such that
|𝑔(𝑥) − 𝑔(𝑦)| < 𝑀|𝑥 − 𝑦|𝛼 for all 𝑥, 𝑦 ∈ [0, 𝑒−1]. In particular,

√
−1
ln 𝑥 < 𝑀𝑥𝛼 (3)

holds for all 𝑥 ∈ (0, 𝑒−1]. This inequality is equivalent to

𝑀2𝑥2𝛼 ln 􏿶
1
𝑥􏿹 > 1.

The substitution 𝑥 = 𝑒−𝑡 turns (3) into

𝑀2𝑡
𝑒2𝛼𝑡 > 1, 𝑡 ∈ [1,∞). (4)

However, it follows from L’Hospital’s Rule that lim𝑡→∞(𝑀2𝑡)/𝑒2𝛼𝑡 = 0, which con-
tradicts (4). Thus, 𝑔 satisfies no uniform Lipschitz condition on [0, 𝑒−1] and there-
fore 𝑔meets the requirements of the problem.

Remark. The inverse of the function constructed in the subproblem 3 in Problem 1 is
𝑔−1 ∶ [0, 1] → [0, 𝑒−1] defined by

𝑔−1(𝑥) = exp 􏿶
−1
𝑥2 􏿹, 𝑥 ∈ (0, 1], and 𝑔−1(0) = 0.

This function ℎ = 𝑔−1 has some quite interesting properties:

1. The 𝑛th derivative of ℎ at 0 exists. Moreover, ℎ(𝑛)(0) = 0.

2. The Maclaurin series of ℎ does not converge to ℎ, although it converges every-
where on ℝ.

Problem 2. A function 𝑓, defined on [𝑎, 𝑏], is said to be absolutely continuous, if for every 𝜖 > 0
there is a 𝛿 > 0 such that

𝑛
􏾜
𝑘=1

|𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| < 𝜖,

for every 𝑛 (𝑛 ∈ ℕ) disjoint open subintervals (𝑎𝑘, 𝑏𝑘) of [𝑎, 𝑏], the sum of whose length
𝑛
􏾜
𝑘=1

(𝑏𝑘 − 𝑎𝑘) < 𝛿.

Prove the following statements.

1. Every absolutely continuous function on [𝑎, 𝑏] is continuous and of bounded variation.

2. If 𝑓 satisfies a uniform Lipschitz condition of order 1, then 𝑓 is absolutely continuous.
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Solution 2.

1. Let 𝑓 be a functionwhich is absolutely continuous on [𝑎, 𝑏]. Given 𝜖 > 0, then there
exists a 𝛿 > 0 satisfying the condition described above. If 𝑥 < 𝑦 are two points in
[𝑎, 𝑏] such that 𝑦 − 𝑥 < 𝛿, then |𝑓(𝑥) − 𝑓(𝑦)| < 𝜖 (from the definition of absolutely
continuous). This implies 𝑓 is uniformly continuous and thus continuous.

Now, we shall show that 𝑓 is of bounded variation. Let a partition 𝑃 of [𝑎, 𝑏] be
given. Let 𝑁 be a positive integer such that 𝑏 − 𝑎 < 𝑁𝛿. Consider a refinement 𝑃′

of 𝑃, where 𝑃′ is defined as:

𝑃′ = 𝑃 ∪ 􏿼𝑎 +
(𝑏 − 𝑎)
𝑁 , 𝑎 + 2(𝑏 − 𝑎)

𝑁 ,… , 𝑎 + (𝑁 − 1)(𝑏 − 𝑎)
𝑁 􏿿 .

Let

𝑃𝑘 = 𝑃′ ∩ 􏿰𝑎 +
(𝑘 − 1)(𝑏 − 𝑎)

𝑁 , 𝑎 + 𝑘(𝑏 − 𝑎)
𝑁 􏿳 (𝑘 = 1, 2, … ,𝑁).

It is easy to see that 𝑆(𝑓; 𝑃𝑘) < 𝜖 for each 𝑘 = 1, 2, … ,𝑁 (from the definition of
absolutely continuous). We conclude that

𝑆(𝑓; 𝑃′) =
𝑁
􏾜
𝑘=1

𝑆(𝑓; 𝑃𝑘) < 𝑁𝜖.

Since 𝑃′ is a refinement of 𝑃, we have 𝑆(𝑓, 𝑃) ≤ 𝑆(𝑓; 𝑃′) < 𝑁𝜖, this shows 𝑓 is of
bounded variation.

2. Since 𝑓 satisfies a uniform Lipschitz condition of order 1, there exists a constant
𝑀 > 0 such that |𝑓(𝑥) − 𝑓(𝑦)| < 𝑀|𝑥 − 𝑦| for all 𝑥, 𝑦 in [𝑎, 𝑏]. Given 𝜖 > 0. Choose
𝛿 = 𝜖/𝑀. Let (𝑎𝑘, 𝑏𝑘) (𝑘 = 1, 2, … , 𝑛) be 𝑛 (𝑛 ∈ ℕ) disjoint open subintervals of
[𝑎, 𝑏], the sum of whose length

𝑛
􏾜
𝑘=1

(𝑏𝑘 − 𝑎𝑘) < 𝛿.

Then, by some simple estimations, we get
𝑛
􏾜
𝑘=1

|𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| ≤
𝑛
􏾜
𝑘=1

𝑀(𝑏𝑘 − 𝑎𝑘) < 𝑀𝛿 = 𝜖.

We conclude that 𝑓 is absolutely continuous on [𝑎, 𝑏].

Remark. Although it seems that a function being of bounded variation and continuous
would be more likely to be absolutely continuous. However, there exists a function
which is of bounded variation and continuous but not absolutely continuous. Cantor
function is an example of these kind of functions. [3]
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Problem 3. Show that a polynomial 𝑓 is of bounded variation on every compact interval [𝑎, 𝑏].
Describe a method for finding the total variation of 𝑓 on [𝑎, 𝑏] if the zeros of the derivative 𝑓′ are
known.

Solution 3. We first prove the case when 𝑓𝑛(𝑥) = 𝑥𝑛 for all 𝑛 ∈ ℕ. 𝑓1 is monotonic on
[𝑎, 𝑏] and thus is of bounded variation (by Theorem 3). Suppose the statement is true
for all 𝑛 ≤ 𝑘, where 𝑘 is a positive number. Then, 𝑓𝑘+1(𝑥) = 𝑓𝑘(𝑥) ⋅ 𝑓1(𝑥), hence 𝑓𝑘+1
is of bounded variation (from Theorem 7). By induction, each 𝑓𝑛(𝑥) = 𝑥𝑛 (𝑛 ∈ ℕ) is
of bounded variation. It is easy to see that 𝑓 is of bounded variation implies that 𝑐𝑓
is of bounded variation, where 𝑐 is a real constant. (We could replace 𝑀 to |𝑐| ⋅ 𝑀 in
Definition 2 to show 𝑐𝑓 is of bounded variation.) Also, note that a constant function is
of bounded variation. Now, for each polynomial 𝑓 with degree 𝑛, we have

𝑓(𝑥) =
𝑛
􏾜
𝑖=0

𝑐𝑖𝑥𝑖,

and therefore it is sum of finitely many functions of bounded variation. This implies
that 𝑓 is of bounded variation. (Theorem 7.)

If 𝑓′ is zero, then 𝑓 is constant and 𝑉𝑓(𝑎, 𝑏) = 0. Suppose 𝑓′ is not 0, and let 𝑍𝑓′

be the set {𝑡 ∈ (𝑎, 𝑏) ∶ 𝑓′(𝑡) = 0}. Since 𝑓′ is a polynomial, 𝑍𝑓′ is a finite set. Let 𝑋
denote the set 𝑍𝑓′ ∪ {𝑎, 𝑏}. Because 𝑋 is finite and contains at least 2 elements, we write
𝑋 = {𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 = 𝑏}. By Theorem 9, we have

𝑉𝑓(𝑎, 𝑏) =
𝑚
􏾜
𝑖=1

𝑉𝑓(𝑡𝑖−1, 𝑡𝑖).

Now, note that the image under 𝑓′ of (𝑡𝑖−1, 𝑡𝑖) cannot contain both positive and nega-
tive numbers, otherwise the continuity of 𝑓′ would indicate that there exists a number
𝑠 ∈ (𝑡𝑖−1, 𝑡𝑖) such that 𝑓′(𝑠) = 0 (Intermediate Value Theorem), which contradicts 𝑠 ∉ 𝑍𝑓′ .
Hence, either 𝑓′(𝑥) > 0, ∀𝑥 ∈ (𝑡𝑖−1, 𝑡𝑖) or 𝑓′(𝑥) < 0, ∀𝑥 ∈ (𝑡𝑖−1, 𝑡𝑖) holds, thus 𝑓 is mono-
tonic on (𝑡𝑖−1, 𝑡𝑖). We conclude that 𝑉𝑓(𝑡𝑖−1, 𝑡𝑖) = |𝑓(𝑡𝑖−1) − 𝑓(𝑡𝑖)|, therefore

𝑉𝑓(𝑎, 𝑏) =
𝑚
􏾜
𝑖=1

|𝑓(𝑡𝑖−1) − 𝑓(𝑡𝑖)|.
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