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1 Rapidly Decreasing Functions
We shall introduce some notations.

Notation 1.

1. Let 𝐶∞(ℝ𝑛) be the set of all smooth functions.

2. Let 𝐶∞0 (ℝ𝑛) be the set of all smooth functions with compact support. (𝑐 is the subscript
denote “compact”.)

We now could give the definition of rapidly decreasing functions.

Definition 1 (Rapidly decreasing functions). Let 𝑓 ∈ 𝐶∞(ℝ𝑛). We said 𝑓 is rapidly decreasing
if

sup
𝑥∈ℝ𝑛

|
|

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑛
􏾟
𝑗=1

𝑥𝛽𝑗𝑗

⎞
⎟⎟⎟⎟⎟⎟⎠𝐷

𝛼𝑓(𝑥)
|
|
< ∞ (1)

holds for any nonnegative integers 𝑛-tuples 𝛼 = (𝛼1, … , 𝛼𝑛) and 𝛽 = (𝛽1, … , 𝛽𝑛). In (1), 𝐷𝛼𝑓(𝑥)
means

𝜕 |𝛼|

𝜕𝛼11 ⋯𝜕𝛼𝑛𝑛
𝑓(𝑥), where |𝛼| =

𝑛
􏾜
𝑖=1
𝛼𝑖.

We often write 𝑓 ∈ 𝔖(ℝ𝑛). There are also some books calling 𝔖(ℝ𝑛) the Schwartz space and
denote it by 𝒮.

I nowgive themotivationwhyweneed to study the Schwartz space𝔖(ℝ𝑛). Later, wewill
find out that Fourier transform on𝔖(ℝ𝑛) is an automorphism. Hence the problem in Fourier
transform may be converted into the automorphism between the dual space of Schwartz
space. Here are some propositions of the space 𝔖(ℝ𝑛).

Proposition 1. 𝔖(ℝ𝑛) is vector space with the the standard addition and scalar multiplication. It is
also a topological space, with the topology defined by the semi-norms of the form

𝑝(𝑓) ∶= sup
𝑥∈ℝ𝑛

|𝑃(𝑥)𝐷𝛼𝑓(𝑥)| ,

where 𝛼 is a fixed 𝑛-tuple and 𝑃(𝑥) is a fixed non-zero polynomial. Together with the topological
structure and linear structure, it is locally convex.

We sometimes write 􏿎𝑓􏿎𝑃,𝛼 for 𝑝(𝑓). In particular, if 𝑃(𝑥) = 𝑥𝛽, then we simply write
􏿎𝑓􏿎𝛽,𝛼 = 𝑝(𝑓). We shall emphasize that the topology is defined by the system of those semi-
norms, not only one of them.

Proposition 2. 𝔖(ℝ𝑛) is closed under the linear partial operations of the form

𝑃(𝑥) ⋅ 𝐷𝛼

where 𝑃 is a polynomial in ℝ.

Proposition 3. 𝐶∞0 (ℝ𝑛) ⊂ 𝔖(ℝ𝑛). Moreover, 𝐶∞0 (ℝ𝑛) is dense in𝔖(ℝ𝑛) with respect to the topology
of 𝔖(ℝ𝑛).
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This proposition is not quite trivial, we shall give a proof.

Proof. Let 𝑓 ∈ 𝔖(ℝ𝑛) and take 𝜓 ∈ 𝐶∞0 (ℝ𝑛) such that 𝜓(𝑥) = 1 when |𝑥| ≤ 1. Then for any
𝜖 > 0, 𝑓𝜖(𝑥) ∶= 𝑓(𝑥) ⋅ 𝜓(𝜖𝑥) ∈ 𝐶∞0 (ℝ𝑛). By applying the Leibniz’ rule, we see that

𝐷𝛼(𝑓𝜖(𝑥) − 𝑓(𝑥)) = 𝐷𝛼􏿴𝑓(𝑥)(𝜓(𝜖𝑥) − 1)􏿷

is a finite linear combination of terms of the form

𝐷𝛽𝑓(𝑥) ⋅ 𝜖|𝛾| ⋅ 􏿴𝐷𝛾𝜓(𝑦)􏿷|
𝑦=𝜖𝑥

,

where 𝛼, 𝛽, and 𝛾 are three 𝑛-tuples such that |𝛽| + |𝛾| = |𝛼| and |𝛾| > 0, and the term 𝐷𝛼𝑓(𝑥) ⋅
(𝜓(𝜖𝑥) − 1). Thus it is clear that given any 𝑛-tuple 𝛼, we have

lim
𝜖→0

𝐷𝛽𝑓(𝑥) ⋅ 𝜖|𝛾| ⋅ 􏿴𝐷𝛾𝜓(𝑦)􏿷|
𝑦=𝜖𝑥

= 0.

We conclude that

lim
𝜖→0

𝐷𝛼(𝑓𝜖(𝑥) − 𝑓(𝑥)) = lim
𝜖→0

(𝐷𝛼𝑓(𝑥)) ⋅ (𝜓(𝜖𝑥) − 1) = 0.

This implies that 􏿎𝑓𝜖 − 𝑓􏿎1,𝛼 → 0 where ‖⋅‖1,𝛼 is the semi-norm defined by the polynomial
𝑃(𝑥) = 1 and the 𝑛-tuple 𝛼.

Proposition 4. 𝔖(ℝ𝑛) ⊂ 𝐿𝑝(ℝ𝑛) for all 1 ≤ 𝑝 ≤ ∞. In fact, 𝔖(ℝ𝑛) is dense in 𝐿𝑝(ℝ𝑛) with respect
to the 𝐿𝑝 norm. (Note: We will not prove the second assertion here.)

Proof. Let 𝑓 ∈ 𝔖(ℝ𝑛). Then the theorem follows from

􏿎𝑓􏿎
𝑝
𝑝 = 􏾙‖𝑥‖1≤1

|𝑓(𝑥)|
𝑝
𝑑𝑥 +􏾙

‖𝑥‖1>1
|𝑓(𝑥)|

𝑝
𝑑𝑥

≤
⎛
⎜⎜⎜⎜⎝sup
𝑥∈ℝ𝑛

|𝑓(𝑥)|
⎞
⎟⎟⎟⎟⎠

𝑝

⋅ 2𝑛 +
⎛
⎜⎜⎜⎜⎝sup
𝑥∈ℝ𝑛

(|𝑥|𝑁 |𝑓(𝑥)|)𝑝􏾙
|𝑥|1>1

1
|𝑥|𝑁𝑝

⎞
⎟⎟⎟⎟⎠

< 𝐶1 + 𝐶2 < ∞.

𝐶1 and 𝐶2 are two constant, whose existence follows from (1).

Definition 2 (Fourier transform and inverse Fourier transform). For any 𝑓 ∈ 𝔖(ℝ𝑛) define
its Fourier transform 􏾦𝑓 by

􏾦𝑓(𝜉) = (2𝜋)−𝑛/2􏾙
ℝ𝑛
𝑒−𝑖⟨𝜉,𝑥⟩𝑓(𝑥)𝑑𝑥, (2)

and the inverse Fourier transform �̃� of 𝑔 ∈ 𝔖(ℝ𝑛) by

�̃�(𝑥) = (2𝜋)−𝑛/2􏾙
ℝ𝑛
𝑒𝑖⟨𝑥,𝜉⟩𝑔(𝜉)𝑑𝜉. (3)

In the above notations, 𝜉 = (𝜉1, … , 𝜉𝑛) ∈ ℝ𝑛 and 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛. ⟨−, −⟩ denotes the
standard inner product on ℝ𝑛.

Proposition 5. The Fourier transform 𝑓 ↦ 􏾦𝑓 maps 𝔖(ℝ𝑛) linearly and continuously into 𝔖(ℝ𝑛).
The inverse Fourier transform 𝑔 ↦ �̃� also maps 𝔖(ℝ𝑛) linearly and continuously into 𝔖(ℝ𝑛).
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Proof. It is clear that the Fourier transform and the inverse Fourier transform are both linear.
It suffices to show that Fourier transform is continuous. Recall that for any continuously
differentiable function 𝜙(𝑥, 𝑦) ∈ 𝐶1(ℝ2𝑛), we have

𝜕
𝜕𝑦𝑖

􏾙
ℝ𝑛
𝜙(𝑥, 𝑦)𝑑𝑥 = 􏾙

ℝ𝑛

𝜕
𝜕𝑦𝑖

𝜙(𝑥, 𝑦)𝑑𝑥.

The smoothness of 𝑓 gives us

𝐷𝛼 􏾦𝑓(𝜉) = (2𝜋)−𝑛/2􏾙
ℝ𝑛
𝑒−𝑖⟨𝜉,𝑥⟩(−𝑖)|𝛼|𝑥𝛼𝑓(𝑥)𝑑𝑥.

Proposition 4 implies that 𝐷𝛼 􏾦𝑓(𝜉) exists and hence 􏾦𝑓 ∈ 𝐶∞(ℝ𝑛). By integration by parts, we
have

(𝑖)|𝛽|𝜉𝛽 􏾦𝑓(𝜉) = (2𝜋)−𝑛/2􏾙
ℝ𝑛
𝑒−𝑖⟨𝜉,𝑥⟩𝐷𝛽𝑓(𝑥)𝑑𝑥.

We conclude
(𝑖)|𝛼|+|𝛽|𝜉𝛽𝐷𝛼 􏾦𝑓(𝜉) = (2𝜋)−𝑛/2􏾙

ℝ𝑛
𝑒−𝑖⟨𝜉,𝑥⟩𝐷𝛽(𝑥𝛼𝑓(𝑥))𝑑𝑥.

Since the Schwartz space is a topological vector space, it suffices to show the Fourier
transform is continuous at 0. Note that 𝐷𝛽(𝑥𝛼𝑓(𝑥)) is a linear combination of the forms

𝑥𝜅 ⋅ 𝐷𝜆𝑓(𝑥),

where 𝜅 and 𝜆 are two 𝑛-tuples. For convenient, we may write

𝐷𝛽(𝑥𝛼𝑓(𝑥)) =
𝑚
􏾜
𝑗=1
𝑐𝑗𝑥𝜅𝑗 ⋅ 𝐷𝜆𝑗𝑓(𝑥).

Let 𝜖 > 0 be given, then let

𝛿 ∶= 𝜖
𝑚 ⋅

⎛
⎜⎜⎜⎜⎜⎝􏾙ℝ𝑛

𝑛
􏾟
𝑘=1

⎛
⎜⎜⎜⎜⎝

1
1 + 𝑥2𝑗

⎞
⎟⎟⎟⎟⎠ 𝑒−𝑖⟨𝜉,𝑥⟩𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

−1

.

Consider the finite intersection 𝐵 of open balls in the Schwartz space defined by

𝐵 ∶=
𝑚
􏾎
𝑗=1

𝐵𝑃𝑗,𝜆𝑗(0; 𝛿), where 𝑃𝑗(𝑥) ∶= 𝑐𝑗 ⋅

⎛
⎜⎜⎜⎜⎜⎝
𝑛
􏾟
𝑘=1
(1 + 𝑥2𝑗 )

⎞
⎟⎟⎟⎟⎟⎠ ⋅ 𝑥

𝜅𝑗 .

Then it is clear that for any 𝑓 ∈ 𝐵, we have

‖ 􏾦𝑓‖𝛽,𝛼 < (2𝜋)−𝑛/2 ⋅ 𝜖.

This proves the Fourier transform is continuous at 0.

Theorem 3 (Fourier’s integral theorem). The inverse Fourier transform is the inverse mapping of
the Fourier transform. In other words, we have

�̃�𝑓 = (2𝜋)−𝑛/2􏾙𝑒𝑖⟨𝑥,𝜉⟩ 􏾦𝑓(𝜉)𝑑𝜉 = 𝑓(𝑥)

and similarly, �̃�𝑓 = 𝑓.

Therefore together with Proposition 5, we see that the Fourier transform is an automor-
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phism on the Schwartz space.

Proof. We first note that

􏾙𝑔(𝜉) 􏾦𝑓(𝜉)𝑒𝑖⟨𝑥,𝜉⟩𝑑𝜉 = 􏾙𝑔(𝜉) 􏿵(2𝜋)−𝑛/2􏾙𝑓(𝑦)𝑒−𝑖􏾉𝜉,𝑦􏽼𝑑𝑦􏿸 𝑒𝑖⟨𝑥,𝜉⟩𝑑𝜉

= (2𝜋)−𝑛/2􏾙􏿵􏾙𝑔(𝜉)𝑒−𝑖􏾉𝜉,𝑦−𝑥􏽼𝑑𝜉􏿸 𝑓(𝑦)𝑑𝑦

= 􏾙􏾦𝑔(𝑦 − 𝑥)𝑓(𝑦)𝑑𝑦 = 􏾙􏾦𝑔(𝑦)𝑓(𝑥 + 𝑦)𝑑𝑦.

(4)

If we replace 𝑔(𝜉)with 𝑔(𝜖𝜉) (𝜖 > 0), then

(2𝜋)−𝑛/2􏾙𝑒−𝑖􏾉𝑦,𝜉􏽼𝑔(𝜖𝜉)𝑑𝜉 = (2𝜋)−𝑛/2𝜖−𝑛􏾙𝑒−𝑖􏾉𝑦,𝑥/𝜖􏽼𝑔(𝑧)𝑑𝑧 = 𝜖−𝑛􏾦𝑔(𝑦/𝜖).

By (4), we obtain that

􏾙𝑔(𝜖𝜉) 􏾦𝑓(𝜉)𝑒𝑖⟨𝑥,𝜉⟩𝑑𝜉 = 􏾙𝜖−𝑛􏾦𝑔(𝑦/𝜖)𝑓(𝑥 + 𝑦)𝑑𝑦 = 􏾙􏾦𝑔(𝑦)𝑓(𝑥 + 𝜖𝑦)𝑑𝑦.

We now take 𝑔(𝑥) = exp(− |𝑥|2 /2) and let 𝜖 → 0. By Lebesgue’s dominated convergence
theorem, we have

𝑔(0)􏾙 􏾦𝑓(𝜉)𝑒𝑖⟨𝑥,𝜉⟩𝑑𝜉 = 𝑓(𝑥)􏾙􏾦𝑔(𝑦)𝑑𝑦.

This proves the theorem since 𝑔(0) = 1 and􏾙􏾦𝑔(𝑦)𝑑𝑦 = (2𝜋)𝑛/2 by the well-known facts:

(2𝜋)−𝑛/2􏾙 exp(− |𝑥|2 /2)𝑒−𝑖􏾉𝑦,𝑥􏽼𝑑𝑥 = exp(− |𝑦|
2
/2),

(2𝜋)−𝑛/2􏾙 exp(− |𝑥|2 /2)𝑑𝑥 = 1.

The first one has been proved before. This proves the theorem.

Corollary. We have

􏾙 􏾦𝑓(𝜉)𝑔(𝜉)𝑑𝜉 = 􏾙𝑓(𝑥)􏾦𝑔(𝑥)𝑑𝑥, (5)

􏾙𝑓(𝜉)𝑔(𝜉)𝑑𝜉 = 􏾙 ̃𝑓(𝑥)�̃�(𝑥)𝑑𝑥, (6)

( 􏾨𝑓 ∗ 𝑔) = (2𝜋)𝑛/2 􏾦𝑓 ⋅ 􏾦𝑔 and (2𝜋)𝑛/2( 􏾨𝑓 ⋅ 𝑔) = 􏾦𝑓 ∗ 􏾦𝑔. (7)

Recall that ∗ is the convolution, more precisely, 𝑓 ∗ 𝑔(𝑥) is defined as

𝑓 ∗ 𝑔(𝑥) = 􏾙𝑓(𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦 = 􏾙𝑔(𝑥 − 𝑦)𝑓(𝑦)𝑑𝑦 = 𝑔 ∗ 𝑓(𝑥).

Proof. (5) can be obtained by plugging in 𝑥 = 0 to (4). For (6), it suffices to show that 􏾦𝑔 = �̃�,
which is true by

􏾦𝑔(𝜉) = 􏾙𝑒−𝑖⟨𝜉,𝑥⟩𝑔(𝑥)𝑑𝑥 = 􏾙𝑒𝑖⟨𝑥,𝜉⟩𝑔(𝑥)𝑑𝑥 = �̃�(𝜉).

We now show (7).

(2𝜋)−𝑛/2􏾙(𝑓 ∗ 𝑔)(𝑥)𝑒−𝑖⟨𝜉,𝑥⟩𝑑𝑥

= (2𝜋)−𝑛/2􏾙𝑔(𝑦)𝑒−𝑖􏾉𝜉,𝑦􏽼 􏿵􏾙𝑓(𝑥 − 𝑦)𝑒−𝑖􏾉𝜉,𝑥−𝑦􏽼𝑑𝑥􏿸 𝑑𝑦

= (2𝜋)𝑛/2 􏾦𝑓(𝜉)􏾦𝑔(𝜉).

5



Since the product of two rapidly decreasing function is also rapidly decreasing (Leibniz rule).
It is also clear that 𝑓∗𝑔 ∈ 𝔖(ℝ𝑛) if both 𝑓 and 𝑔 belong to𝔖(ℝ𝑛). This shows the first statement
of (7).

Theorem 4 (Poisson’s Summation Formula). Let 𝜙 ∈ 𝔖(ℝ1) and let 􏾧𝜙 ∈ 𝔖(ℝ1) be its Fourier
transform. Then we have

∞
􏾜
𝑛=−∞

𝜙(2𝜋𝑛) =
∞
􏾜
𝑛=−∞

􏾧𝜙(𝑛). (8)

Proof. Set 𝑓(𝑥) =
∞
􏾜
𝑛=−∞

𝜙(𝑥 + 2𝜋𝑛). The series is absolutely convergent since

|𝜙(𝑥)| ≤ 𝐶/𝑥2, for some 𝐶 ∈ ℝ+.

Similar argument also holds for the series
∞
􏾜
𝑛=−∞

􏾧𝜙(𝑛).

Hence both sides of (8) are absolutely convergence. Also it is clear that 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥). We
compute the Fourier coefficient.

𝑐𝑘(𝑓) = (2𝜋)−1/2􏾙
2𝜋

0
𝑓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥 =

∞
􏾜
𝑛=−∞

(2𝜋)−1/2􏾙
2𝜋

0
𝜙(𝑥 + 2𝜋𝑛)𝑒−𝑖𝑘𝑥𝑑𝑥

=
∞
􏾜
𝑛=−∞

(2𝜋)−1/2􏾙
2𝜋(𝑛+1)

2𝜋𝑛
𝜙(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥 = 􏾧𝜙(𝑘).

Since 𝑓 ∈ 𝐿2(0, 2𝜋), we know that its Fourier series converge to itself in the 𝐿2 norm. That is
𝑠
􏾜
𝑘=−𝑠

􏾧𝜙(𝑘)𝑒𝑖𝑘𝑥 𝐿2⟶𝑓(𝑥),

as 𝑠 → ∞. However it is clear that the convergence on the right hand side is uniform by the
Weierstrass𝑀-test, hence the limit function is continuous. This shows that

𝑔(𝑥) ∶=
∞
􏾜
𝑘=−∞

􏾧𝜙(𝑘)𝑒𝑖𝑘𝑥

is a continuous function of 𝑥 and
􏿎𝑔 − 𝑓􏿎𝐿2 = 0

and hence 𝑓 = 𝑔. We obtain that
∞
􏾜
𝑛=−∞

𝜙(𝑥 + 2𝜋𝑛) =
∞
􏾜
𝑘=−∞

􏾧𝜙(𝑘)𝑒𝑖𝑘𝑥.

Plug in 𝑥 = 0 gives the desired result.
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2 The Fourier Transform of Tempered Distributions
In this section, we shall define a concept called tempered distribution. We later will see

that we can define a Fourier transform on a tempered distribution.

Definition 5 (tempered distribution on ℝ𝑛). A bounded (continuous) linear function 𝑇 on
𝔖(ℝ𝑛) is called a tempered distribution inℝ𝑛. The set of all tempered distributions is denoted
by 𝔖(ℝ𝑛)′.

We can consider the strong topology on 𝔖(ℝ𝑛)′.

Definition 6 (strong topology). The strong dual topology is a topology defined by the uni-
form convergence on some bounded sets. More precisely, let 𝒜 be the collection of all
bounded sets on 𝔖(ℝ𝑛). Then each set 𝐴 ⊂ 𝒜 define a semi-norm

􏿎𝜙(𝑥)􏿎𝐴 = sup
𝑥∈𝐴

|𝜙(𝑥)| .

The topology generated by all semi-norms of this form is called the strong topology on𝔖(ℝ𝑛).
However we did not define the concept of boundedness of a set 𝐴 ⊂ 𝔖(ℝ𝑛), we may under-
stand as 𝐴 is bounded if and only if 𝑝(𝐴) is bounded for each semi-norm defined on 𝔖(ℝ𝑛).

The strong dual topology on 𝔖(ℝ𝑛) makes 𝔖(ℝ𝑛)′ an locally convex linear topological
space.

Proposition 6. Recall that 𝐶∞0 is all the smooth functions that have compact support. We have 𝐶∞0 ⊂
𝔖(ℝ𝑛) ⊂ 𝐶∞ as abstract set. It is worth noting that the topology of 𝐶∞0 (ℝ𝑛) is stronger than that of
𝔖(ℝ𝑛) thus

𝔖(ℝ𝑛)′ ⊂ 𝔇(ℝ𝑛)′.
Similarly, we have

𝔈(ℝ𝑛)′ ⊂ 𝔖(ℝ𝑛)′,
where 𝔈(ℝ𝑛)′ denotes the (strong) dual space of 𝔈.

Since 𝐶∞0 is dense in 𝔖(ℝ𝑛), any tempered distribution 𝑇 ∈ 𝔖(ℝ𝑛)′ restrict to 𝐶∞0 is also
continuous and linear. For more information about the topology of𝔇(ℝ𝑛) and 𝔈(ℝ𝑛), please
refer to the appendix.

Example 7. For any 𝑓 ∈ 𝐿𝑝(ℝ𝑛) (𝑝 ≥ 1), it defines a tempered distribution

𝑇𝑓(𝜙) = 􏾙
ℝ𝑛
𝜙(𝑥)𝑓(𝑥)𝑑𝑥.

This example might help us understand some concepts later, it help us to define the derivative of a
tempered distribution.

We shall now define the concept of slowly increasing function.

Definition 8 (slowly increasing function). A function 𝑓 ∈ 𝐶∞(ℝ𝑛) is called slowly increasing
at∞ if for any non-negative integer 𝑛-tuple 𝑗, there is a non-negative integer 𝑁 such that

lim
|𝑥|→∞

|𝑥|−𝑁 |𝐷𝑗𝑓(𝑥)| = 0.
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The set of all slowly increasing function is denoted by 𝔒𝑀(ℝ𝑛).

We may do similar things that we have done when we discussed rapidly decreasing
functions. We can easily see that 𝔒𝑀(ℝ𝑛) is a vector space by the function sum and scalar
multiplication. It is also a topological space by the topology defined by the system of semi-
norms of the form

𝑝(𝑓) = 𝑝ℎ,𝑗(𝑓) = sup
𝑥∈ℝ𝑛

|ℎ(𝑥)𝐷𝑗𝑓(𝑥)| ,

where ℎ is a fixed function in 𝔖(ℝ𝑛) and 𝑗 is a fixed nonnegative integer 𝑛-tuple. Together
with the linear structure and the topological structure, the function space𝔒𝑀(ℝ𝑛) is a locally
convex linear topological space.

Proposition 7. 𝐶∞0 is dense in 𝔒𝑀(ℝ𝑛) with respect to the topology in 𝔒𝑀(ℝ𝑛).

Proposition 8. Any function 𝑓 ∈ 𝔒𝑀(ℝ𝑛) defines a tempered distribution

𝑇𝑓(𝜙) = 􏾙
ℝ𝑛
𝑓(𝑥)𝜙(𝑥)𝑑𝑥.

If 𝑓 ∈ 𝔒𝑀(ℝ𝑛), then we might define

𝐷𝑗𝑇𝑓(𝜙) ∶= 𝑇𝐷𝑗𝑓(𝜙) = 􏾙
ℝ𝑛
𝐷𝑗𝑓(𝑥)𝜙(𝑥)𝑑𝑥 = (−1)|𝑗|􏾙

ℝ𝑛
𝑓(𝑥)𝐷𝑗𝜙(𝑥)𝑑𝑥 = (−1)|𝑗|𝑇𝑓(𝐷𝑗𝜙).

This suggests us define the derivative of a tempered distribution 𝑇 by

𝐷𝑗𝑇(𝜙) = (−1)|𝑗|𝑇(𝐷𝑗𝜙).

This is reasonable since the differential operator 𝐷𝑗 is linear on 𝔖(ℝ𝑛). Similarly, for any
functions 𝑓, 𝑔 ∈ 𝔒𝑀(ℝ𝑛), we can define the multiplication by 𝑔 to the tempered distribution
𝑇𝑓 through

𝑔(𝑇𝑓)(𝜙) = 𝑇𝑓𝑔(𝜙) = 􏾙𝑓(𝑥)𝑔(𝑥)𝜙(𝑥)𝑑𝑥.
This suggests us we may define the multiplication by a function 𝑔 to any tempered distribu-
tion through

(𝑔 ⋅ 𝑇)(𝜙) = 𝑇(𝑔 ⋅ 𝜙).
Since the mapping 𝜙 ↦ 𝑔 ⋅ 𝜙 is linear and continuous, 𝑔(𝑇) is also a continuous linear func-
tional.

2.1 The Fourier Transform of Tempered Distributions
Recall that in the linear algebra class, we have learned that for any linear transformation

𝑇 ∶ 𝑉 → 𝑊, it induces a linear transformation on the dual spaces 𝑇∨ ∶ 𝑊∨
b → 𝑉∨

b by

𝑇∨(ℓ)(𝑣) = ℓ(𝑇(𝑣)).

Here 𝑉∨
b is the dual space of 𝑉 that consists of continuous linear functional on 𝑉. This mo-

tivates us to define the Fourier transform on 𝔖(ℝ𝑛)′ as
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Definition 9 (The Fourier Transform of a tempered distribution). Let 𝑇 be a tempered dis-
tribution. We define the Fourier transform 􏾧𝑇 of 𝑇 by

􏾧𝑇(𝜙) = 𝑇(􏾧𝜙).

Example 10. If 𝑓 ∈ 𝐿1(ℝ𝑛), then􏾨𝑇𝑓 = 𝑇 􏾦𝑓. This can be seen from

􏾨𝑇𝑓(𝜙) = 𝑇𝑓(􏾧𝜙) = 􏾙𝑓(𝑥)􏾧𝜙(𝑥)𝑑𝑥 = (2𝜋)−𝑛/2􏾙𝑓(𝑥) 􏿵􏾙 𝑒−𝑖⟨𝑥,𝜉⟩𝜙(𝜉)𝑑𝜉􏿸 𝑑𝑥

= 􏾙 􏾦𝑓(𝜉)𝜙(𝜉)𝑑𝜉.

Proposition 9. Let ̌𝑓(𝑥) = 𝑓(−𝑥). Then we have
􏾦􏾦𝑓 = ̌𝑓.

The proposition is true by

�̃�(𝑥) = 􏾙𝑒𝑖⟨𝑥,𝜉⟩𝑔(𝜉)𝑑𝜉 = 􏾙𝑒−𝑖⟨−𝑥,𝜉⟩𝑔(𝜉)𝑑𝜉 = 􏾦𝑔(−𝑥).

This identity helps us to generalize the Fourier’s integral theorem.

Theorem 11 (Fourier’s integral theorem on Schwartz space). If we define �̌�(𝜙) = 𝑇(�̌�), then we
have

􏾧􏾧𝑇 = �̌�.
We infer that the map 𝑇 ↦ �̌� is linear.

Proof. By definition, we have
􏾧􏾧𝑇(𝜙) = 𝑇(􏾧􏾧𝜙) = 𝑇(�̌�) = �̌�(𝜙)

holds for all 𝜙 ∈ 𝔖(ℝ𝑛).

Proposition 10. The Fourier transform 𝑇 ↦ 􏾧𝑇 and its inverse are linear and continuous on𝔖(ℝ𝑛)′
onto 𝔖(ℝ𝑛)′ with respect the weak-∗ topology.

For clarity, we give the definition of the weak-∗ topology.

Definition 12 (weak-∗ topology). Let𝑉 be a topological vector space. Then the weak-∗ topol-
ogy is the weakest topology defined on the continuous dual space 𝑉∨

b of 𝑉, which satisfies
the property: for every 𝑥 ∈ 𝑉 the map

𝜙𝑥 ∶ 𝑉∨
b → ℂ
ℓ ↦ ℓ(𝑥) (ℓ ∈ 𝑉∨

b )
is continuous.

The Fourier’s integral theorem shows that 𝑇𝑛(𝜙) → 𝑇(𝜙) for all 𝜙 ∈ 𝔖(ℝ𝑛) implies
􏾨𝑇𝑛(𝜙) = 𝑇𝑛 􏿴􏾧𝜙􏿷 → 𝑇 􏿴􏾧𝜙􏿷 = 􏾧𝑇(𝜙).

Theorem 13 (Plancherel’s Theorem). If 𝑓 ∈ 𝐿2(ℝ𝑛) then the Fourier transform 􏾧𝑇𝑓 of 𝑇𝑓 is defined
by a function 􏾦𝑓 ∈ 𝐿2(ℝ𝑛), that is, there is a function 􏾦𝑓 ∈ 𝐿2(ℝ𝑛) such that

􏾧𝑇𝑓 = 𝑇 􏾦𝑓,
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and

‖ 􏾦𝑓‖𝐿2 = 􏿵􏾙 | 􏾦𝑓|
2
𝑑𝑥􏿸

1/2
= 􏿵􏾙 |𝑓|

2
𝑑𝑥􏿸

1/2
= 􏿎𝑓􏿎𝐿2 .

Proof. By the Hölder’s inequality, we have

|􏾧𝑇𝑓(𝜙)| = |𝑇𝑓(􏾧𝜙)| = 􏿐􏾙𝑓(𝑥) 􏾨𝜙(𝑥)𝑑𝑥􏿐 ≤ 􏿎𝑓􏿎𝐿2 ⋅ ‖
􏾧𝜙‖𝐿2 = 􏿎𝑓􏿎𝐿2 ⋅ 􏿎𝜙􏿎𝐿2 .

Note that we have used the fact that ‖􏾧𝜙‖𝐿2 = 􏿎𝜙􏿎𝐿2 by (6). Hence, this shows that 􏾧𝑇𝑓 is a
bounded linear functional on 𝔖(ℝ𝑛), and it extends continuously to a bounded linear func-
tional on 𝐿2(ℝ𝑛) since it is well-known that the Schwartz space is dense in the 𝐿2(ℝ𝑛) space
(with respect to the 𝐿2 norm). Thus, by Riesz’ representation theorem, there exists a unique
function 􏾦𝑓 ∈ 𝐿2(ℝ𝑛) such that

􏾧𝑇𝑓(𝜙) = 􏾙𝜙(𝑥) 􏾦𝑓(𝑥)𝑑𝑥 = 𝑇 􏾦𝑓(𝜙) or 􏾙 􏾦𝑓𝜙 = 􏾙𝑓􏾧𝜙, ∀𝜙 ∈ 𝔖(ℝ𝑛). (9)

Now we use the fact that 𝔖(ℝ𝑛) is dense in 𝐿2(ℝ𝑛) again, we let 𝜙𝑛 ∈ 𝐿2(ℝ𝑛) be a sequence of
functions converging to 􏾦𝑓 (in the 𝐿2 sense). Then we have

|􏾙𝑓(𝑥)𝜙𝑛(𝑥)𝑑𝑥| ≤ 􏿎𝑓􏿎𝐿2 ⋅ 􏿎𝜙𝑛􏿎𝐿2 .

Taking limit 𝑛 → ∞ gives us
‖ 􏾦𝑓‖2𝐿2 ≤ 􏿎𝑓􏿎𝐿2 ⋅ ‖

􏾦𝑓‖𝐿2 ,

which implies ‖ 􏾦𝑓‖𝐿2 ≤ 􏿎𝑓􏿎𝐿2 . We thus have ‖ 􏾦􏾦𝑓 ‖𝐿2 ≤ ‖ 􏾦𝑓‖𝐿2 ≤ 􏿎𝑓􏿎𝐿2 . It is worth noting that

􏾙
ℝ𝑛

􏾦􏾦𝑓(𝑥)𝜙(𝑥)𝑑𝑥 = 􏾙
ℝ𝑛
𝑓(𝑥)𝜙(−𝑥)𝑑𝑥 = 􏾙

ℝ𝑛
𝑓(−𝑥)𝜙(𝑥)𝑑𝑥

for all 𝜙 ∈ 𝔖(ℝ𝑛). We conclude that
􏾦􏾦𝑓(𝑥) = 𝑓(−𝑥)

for almost every 𝑥. Thus ‖ 􏾦􏾦𝑓 ‖𝐿2 ≤ 􏿎𝑓􏿎𝐿2 and therefore ‖ 􏾦𝑓‖𝐿2 = 􏿎𝑓􏿎𝐿2 .

From the theorem, we can define the Fourier transform by the following.

Definition 14 (Fourier transform on the 𝐿2 space). For a function 𝑓 ∈ 𝐿2(ℝ𝑛) we define its
Fourier transform be the above obtained 􏾦𝑓.

Corollary. We have, for any 𝑓 ∈ 𝐿2(ℝ𝑛),

􏾦𝑓(𝑥) = lim
ℎ→∞

(2𝜋)−𝑛/2􏾙
|𝑥|≤ℎ

𝑒−𝑖􏾉𝑥,𝑦􏽼𝑓(𝑦)𝑑𝑦. (10)

Proof. Let

𝑓ℎ(𝑥) ∶=

⎧⎪⎪⎨
⎪⎪⎩
𝑓(𝑥) , if |𝑥| ≤ ℎ
0 , if |𝑥| > ℎ

.

Then lim
ℎ→∞

􏿎𝑓ℎ − 𝑓􏿎𝐿2 = 0 and thus we have lim
ℎ→∞

‖ 􏾦𝑓ℎ − 􏾦𝑓‖𝐿2 = 0 and 􏾦𝑓(𝑥) = lim
ℎ→∞

􏾦𝑓ℎ(𝑥) for almost
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every 𝑥. By (9), we have

􏾙
ℝ𝑛

􏾦𝑓ℎ(𝑥)𝜙(𝑥)𝑑𝑥 = 􏾙
ℝ𝑛
𝑓ℎ(𝑥)􏾧𝜙(𝑥)𝑑𝑥

= 􏾙
|𝑥|≤ℎ

𝑓(𝑥) 􏿶􏾙(2𝜋)−𝑛/2􏾙
ℝ𝑛
𝑒−𝑖􏾉𝑥,𝑦􏽼𝜙(𝑦)𝑑𝑦􏿹 𝑑𝑥

♠= 􏾙
ℝ𝑛
􏿶(2𝜋)−𝑛/2􏾙

|𝑥|≤ℎ
𝑒−𝑖􏾉𝑥,𝑦􏽼𝑓(𝑥)𝑑𝑥􏿹𝜙(𝑦)𝑑𝑦.

(11)

Changing the order of integration (♠) is valid by Fubini’s theorem. Since (11) is true for all
𝜙 ∈ 𝔖(ℝ𝑛), we conclude that

􏾦𝑓ℎ(𝑥) = (2𝜋)−𝑛/2􏾙
|𝑥|≤ℎ

𝑒−𝑖􏾉𝑥,𝑦􏽼𝑓(𝑥)𝑑𝑥.

Together with 􏾦𝑓(𝑥) = lim
ℎ→∞

􏾦𝑓ℎ(𝑥), we obtain the desired result.

Remark. However,the equation

􏾦𝑓(𝑥) = (2𝜋)−𝑛/2􏾙
ℝ𝑛
𝑒−𝑖􏾉𝑥,𝑦􏽼𝑓(𝑦)𝑑𝑦. (12)

is not true, since the integral on the right hand side might diverge. (Recall that in one of
the homework, we are asked to show that one improper integral might not be Lebesgue
integrable, but converge in the sense of Riemann integral.)

Corollary. The Fourier transform on the 𝐿2 space is bijective, moreover, we have

􏾉𝑓, 𝑔􏽼 = 􏾊 􏾦𝑓, 􏾦𝑔􏽽 (13)

for all 𝑓, 𝑔 ∈ 𝐿2(ℝ𝑛).

Proof. Similar to Fourier transform on the Schwartz space, we consider the inverse Fourier
transform 𝑓 → ̃𝑓. We can define the inverse Fourier transform ̃𝑓 of a function 𝑓 ∈ 𝐿2(ℝ𝑛) by

̃𝑓 ∈ 𝐿2(ℝ𝑛) is the unique function such that �̃�𝑓 = 𝑇 ̃𝑓.

Then, similar argument shows that

̃𝑓(𝑥) = lim
ℎ→∞

(2𝜋)−𝑛/2􏾙
|𝑥|≤ℎ

𝑒𝑖􏾉𝑥,𝑦􏽼𝑓(𝑦)𝑑𝑦. (14)

It is also clear that ‖ ̃𝑓‖𝐿2 = 􏿎𝑓􏿎𝐿2 and
�̃�𝑓(𝑥) = �̃�𝑓(𝑥) = 𝑓(𝑥) for almost every 𝑥. Therefore 𝑓 → 􏾦𝑓

is bijective. The corollary now follows by the identity

􏾉𝑥, 𝑦􏽼 = 1
4(􏿎𝑥 + 𝑦􏿎

2
− 􏿎𝑥 − 𝑦􏿎

2
) + 𝑖

4(􏿎𝑥 + 𝑖𝑦􏿎
2
− 􏿎𝑥 − 𝑖𝑦􏿎

2
),

where 𝑥, 𝑦 are in some inner product spaces.

Theorem 15 (Parseval’s Theorem). Let 𝑓, 𝑔 ∈ 𝐿2(ℝ𝑛) and let 􏾦𝑓, 􏾦𝑔 be their Fourier transform. Then

􏾙
ℝ𝑛

􏾦𝑓(𝑢)􏾦𝑔(𝑢)𝑑𝑢 = 􏾙
ℝ𝑛
𝑓(𝑥)𝑔(−𝑥)𝑑𝑥, (15)

and therefore

􏾙
ℝ𝑛

􏾦𝑓(𝑢)􏾦𝑔(𝑢)𝑒𝑖⟨𝑢,𝑥⟩𝑑𝑢 = 􏾙
ℝ𝑛
𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦. (16)
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Thus, if 􏾦𝑓, 􏾦𝑔 and 􏾦𝑓 ⋅ 􏾦𝑔 both belong to 𝐿2(ℝ𝑛), then 􏾦𝑓 ⋅ 􏾦𝑔 is the Fourier transform of the function

􏾙
ℝ𝑛
𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦.

Similarly, if 𝑓, 𝑔 and 𝑓 ∗ 𝑔 both belong to 𝐿2(ℝ𝑛), then the same conclusion also hold.

Proof. It is easy to see that

(2𝜋)−𝑛/2􏾙
ℝ𝑛
𝑔(−𝑥)𝑒−𝑖⟨𝑢,𝑥⟩𝑑𝑥 = 􏾦𝑔(𝑢).

Thus we have 􏾦𝑔 = �̌�𝑔. Now it follows that

􏾙 􏾦𝑓(𝑢)􏾦𝑔(𝑢)𝑑𝑢 = 􏾊 􏾦𝑓, 􏾦𝑔􏽽 = 􏾊 􏾦𝑓, �̌�𝑔􏽽 = 􏾊𝑓, �̌�􏽽 = 􏾙𝑓(𝑥)𝑔(−𝑥)𝑑𝑥.

Next note that we have shown that, in the proof of (6), �̃� = 􏾦𝑔. (Although we are focusing on
𝔖(ℝ𝑛) not 𝐿2 in that proof, it still can be proved similarly.) Therefore, we conclude that

􏾙𝑔(𝑥 − 𝑦)𝑒−𝑖􏾉𝑢,𝑦􏽼𝑑𝑦 = 􏾙𝑔(𝑡)𝑒−𝑖⟨𝑢,𝑥−𝑡⟩𝑑𝑡 = 𝑒−𝑖⟨𝑢,𝑥⟩ ⋅ �̃�(𝑢) = 𝑒−𝑖⟨𝑢,𝑥⟩ ⋅ 􏾦𝑔(𝑢).

Thus we obtain

􏾙
ℝ𝑛

􏾦𝑓(𝑢)􏾦𝑔(𝑢)𝑒𝑖⟨𝑢,𝑥⟩𝑑𝑢 = 􏾊 􏾦𝑓, 𝑒−𝑖⟨𝑢,𝑥⟩􏾦𝑔(𝑢)􏽽
[𝑢]
= 􏾊𝑓(𝑦), 𝑔(𝑥 − 𝑦)􏽽

[𝑦]
= 􏾙

ℝ𝑛
𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦.

We use ⟨⋅, ⋅⟩[𝑢] to denote the inner product of two functions of the variable 𝑢.

3 Convolutions
We have already define the convolution of two functions 𝑓, 𝑔 ∈ 𝐶∞(ℝ𝑛), one of which

has a compact support, by

(𝑓 ∗ 𝑔)(𝑥) = 􏾙
ℝ𝑛
𝑓(𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦 = 􏾙

ℝ𝑛
𝑓(𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦 = (𝑔 ∗ 𝑓)(𝑥).

This formula suggests us that we may define the convolution of 𝑇 ∈ 𝔇(ℝ𝑛)′ and a function
𝜙 ∈ 𝔇(ℝ𝑛) (or 𝑇 ∈ 𝔈(ℝ𝑛)′ and a 𝜙 ∈ 𝔈(ℝ𝑛)) by

(𝑇 ∗ 𝜙)(𝑥) ∶= 𝑇[𝑦](𝜙(𝑥 − 𝑦)), (17)

where 𝑇[𝑦] indicates that we apply the distribution 𝑇 on test functions of 𝑦. It is worth noting
that 𝑇 ∗ 𝜙 is a function on ℝ𝑛. In fact, we have the following proposition.

Proposition 11. (𝑇 ∗ 𝜙) ∈ 𝐶∞(ℝ𝑛) and supp(𝑇 ∗ 𝜙) ⊂ supp(𝑇) + supp(𝜙). In other words,

supp(𝑇 ∗ 𝜙) ⊂ {𝑤 ∈ ℝ𝑛 ∶ 𝑤 = 𝑥 + 𝑦, 𝑥 ∈ supp(𝑇), 𝑦 ∈ supp(𝜙)}.

Moreover, we have
𝐷𝛼(𝑇 ∗ 𝜙) = 𝑇 ∗ (𝐷𝛼𝜙) = (𝐷𝛼𝑇) ∗ 𝜙. (18)

This notation is quite confusing for me at the first glance since my instinct thinks that

supp(𝑇) ∶= cl{𝑓 ∈ 𝔇(ℝ𝑛) ∶ 𝑇(𝑓) ≠ 0},
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where the closure is taken on the topology of 𝔇(ℝ𝑛). After I searched some information on
the internet, I found that my instinct was totally wrong. For clarity, let me write down the
definition of the support of a distribution.

Definition 16 (support of a distribution). Let 𝑇 ∈ 𝔇(ℝ𝑛)′ be a distribution. Then an open set
𝜔 ⊂ ℝ𝑛 is said to be an annihilation set if for every 𝜙 ∈ 𝐶∞0 (ℝ𝑛) with supp(𝜙) ⊂ 𝜔, we have
𝑇(𝜙) = 0. Then the support supp(𝑇) of 𝑇 is defined to be the complement of the union of all
open annihilation sets.

Proposition 12. Given a distribution 𝑇 ∈ 𝔇(ℝ𝑛)′. If 𝜔1 and 𝜔2 are two open annihilation sets of 𝑇,
then so is 𝜔1 ∪ 𝜔2.

Proof. This is just a corollary of “partition of unity”, that is, for any given bounded open set
𝑈 ⊂ ℝ𝑛, there are countably many smooth function 𝜌𝑖 ∶ ℝ𝑛 → [0, 1] such that

∞
􏾜
𝑖=1
𝜌𝑖 = 𝜒𝑈 .

Proof of Proposition 11. Let 𝑥 ∈ ℝ𝑛 such that 𝑇 ∗ 𝜙(𝑥) ≠ 0. Then

𝑇[𝑦](𝜙(𝑥 − 𝑦)) ≠ 0.

We claim that (𝑥 − supp(𝜙)) ∩ supp(𝑇) ≠ ∅. If not, then the support of 𝜙(𝑥 − 𝑦) as a function
of 𝑦 is an annihilation set, that is, (𝑥 − supp(𝜙)) ∩ supp(𝑇) = ∅, and hence 𝑇[𝑦](𝜙(𝑥 − 𝑦)) = 0,
which leads to a contradiction. Thus, we have 𝑥 ∈ supp(𝜙) + supp(𝑇). Since 𝐾 +𝐹 is closed if
𝐾 is compact and 𝐹 is closed inℝ𝑛, we conclude that supp(𝜙) + supp(𝑇) is closed. Deduction
above shows that

{𝑥 ∶ (𝑇 ∗ 𝜙)(𝑥) ≠ 0} ⊂ supp(𝜙) + supp(𝑇),
and therefore

supp(𝑇 ∗ 𝜙) ∶= cl{𝑥 ∶ (𝑇 ∗ 𝜙)(𝑥) ≠ 0} ⊂ supp(𝜙) + supp(𝑇).

Next, for the second part of the proposition, it suffices to show that |𝛼| = 1. Let 𝑒𝑗 be the
unit vector of ℝ𝑛 along the 𝑥𝑗-axis and consider the equation

(𝑇 ∗ 𝜙)(𝑥 + ℎ𝑒𝑗) − (𝑇 ∗ 𝜙)(𝑥)
ℎ = 𝑇[𝑦]((𝜙(𝑥 + ℎ𝑒𝑗) − 𝜙(𝑥))/ℎ).

When ℎ → 0, the function enclosed by the outer parenthesis (on the right side) converges,

as a function of 𝑦, to 􏿶
𝜕𝜙
𝜕𝑥𝑗

􏿹 (𝑥 − 𝑦) in 𝔇(ℝ𝑛) (or in 𝔈(ℝ𝑛)). Therefore we obtain

𝜕
𝜕𝑥𝑗

(𝑇 ∗ 𝜙)(𝑥) = 􏿶𝑇 ∗
𝜕𝜙
𝜕𝑥𝑗

􏿹 (𝑥).

Moreover, recall that we have defined the derivatives of distributions by

(𝐷𝛼)𝑇(𝜙) ∶= (−1)|𝛼|𝑇(𝐷𝛼(𝜙)).
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Thus we have

􏿶
𝜕𝑇
𝜕𝑥𝑗

∗ 𝜙􏿹 (𝑥) =
𝜕𝑇[𝑦]
𝜕𝑦𝑗

(𝜙(𝑥 − 𝑦)) ∶= 𝑇[𝑦] 􏿶−
𝜕𝜙(𝑥 − 𝑦)
𝜕𝑦𝑗

􏿹 = 􏿶𝑇 ∗
𝜕𝜙
𝜕𝑥𝑗

􏿹 (𝑥).

This prove the second statement of the proposition. □

Corollary. If 𝑇 ∈ 𝔈(ℝ𝑛)′ and 𝜙 ∈ 𝔇(ℝ𝑛) ⊂ 𝔈(ℝ𝑛), then

supp(𝑇 ∗ 𝜙) is compact.

Proof. It is clear that 𝐾1 + 𝐾2 is compact for any two compact subsets 𝐾1, 𝐾2 ⊂ ℝ𝑛. Note that
𝔈(ℝ𝑛)′ is defined as the subset of𝔇(ℝ𝑛)′ consisting of compactly supported distributions.

Proposition 13. Suppose 𝜙,𝜓 are in 𝔇(ℝ𝑛) and 𝑇 ∈ 𝔇(ℝ𝑛)′ (or 𝜙 ∈ 𝔈(ℝ𝑛), 𝜓 ∈ 𝔇(ℝ𝑛), and
𝑇 ∈ 𝔈(ℝ𝑛)′), then we have

(𝑇 ∗ 𝜙) ∗ 𝜓 = 𝑇 ∗ (𝜙 ∗ 𝜓). (19)

Proof. We approximate the function (𝜙 ∗ 𝜓)(𝑥) by the Riemann sum

𝑓ℎ(𝑥) = ℎ𝑛 􏾜
𝑘∈ℤ𝑛

𝜙(𝑥 − 𝑘ℎ)𝜓(𝑘ℎ),

where ℎ > 0. For every differentiation 𝐷𝛼 and for every compact set 𝐾, the functions

𝐷𝛼𝑓ℎ(𝑥) = ℎ𝑛 􏾜
𝑘∈ℤ𝑛

𝐷𝛼𝜙(𝑥 − 𝑘ℎ)𝜓(𝑘ℎ)

converges uniformly in 𝑥 (on 𝐾). The limit function is

􏿴𝐷𝛼𝜙) ∗ 𝜓􏿷 (𝑥) = 􏿴𝐷𝛼(𝜙 ∗ 𝜓)􏿷 (𝑥).

Hence we see that limℎ→0 𝑓ℎ = 𝜙 ∗ 𝜓 in 𝔇(ℝ𝑛) (or in 𝔈(ℝ𝑛)). Therefore, by the linearity and
continuity of 𝑇, we have

𝑇 ∗ (𝜙 ∗ 𝜓)(𝑥) = lim
ℎ→0

(𝑇 ∗ 𝑓ℎ)(𝑥) = lim
ℎ→0

ℎ𝑛 􏾜
𝑘∈ℤ𝑛

(𝑇 ∗ 𝜙)(𝑥 − 𝑘ℎ)𝜓(𝑘ℎ) = ((𝑇 ∗ 𝜙) ∗ 𝜓)(𝑥).

This gives the desired result.

Next we are going to introduce an useful definition.

Definition 17 (Regularization). Let 𝜙 ∈ 𝔇(ℝ𝑛) be a non-negative function such that

1. 􏾙
ℝ𝑛
𝜙(𝑥)𝑑𝑥 = 1.

2. supp(𝜙) ⊂ {𝑥 ∈ ℝ𝑛 ∶ |𝑥| ≤ 1}.

We write 𝜙𝜖(𝑥) ∶= 𝜖−𝑛𝜙(𝑥/𝜖), for 𝜖 > 0. We call 𝑇 ∗ 𝜙𝜖 the regularization of 𝑇 ∈ 𝔇(ℝ𝑛)′ (or
𝔈(ℝ𝑛)′) through 𝜙𝜖(𝑥).

In fact, this concept have been taught implicitly in the class, which we were constructing
the Kolmogorov’s function with Fourier series diverging almost everywhere. In that class
we have shown that for any 𝑓 ∈ 𝐿𝑝, we have

􏿎𝑓 ∗ 𝜙𝜖 − 𝑓􏿎𝑝 → 0

as 𝜖 → 0. Here we have some very similar result, even 𝑓 is replaced by a distribution 𝑇.
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Theorem 18. Let 𝑇 ∈ 𝔇(ℝ𝑛)′ (or 𝔈(ℝ𝑛)′). Then we have

lim
𝜖→0

(𝑇 ∗ 𝜙𝜖) = 𝑇

in the weak-∗ topology. If 𝜙𝜖 is chosen for the approximation, then it is called the approximate identity.

This theorem is also very confusing for me when I first heard this in the meeting of our
study group. How come the limit of a sequence of functions becomes a distributions? After
some discussions, we figured out that wemay use the natural inclusion from 𝔈(ℝ𝑛) to𝔇(ℝ𝑛)′
(or from𝔇(ℝ𝑛) to 𝔈(ℝ𝑛)′). For each 𝑓 ∈ 𝔈(ℝ𝑛), we can associate it with a natural distribution
𝑇𝑓 ∈ 𝔇(ℝ𝑛)′ defined by

𝑇𝑓 ∶ 𝜙 ↦ 􏾙𝑓𝜙.
Similarly, for 𝑓 ∈ 𝔇(ℝ𝑛), we can associate it with a natural distribution on 𝑇𝑓 ∈ 𝔈(ℝ𝑛)′ by

𝑇𝑓 ∶ 𝜙 ↦ 􏾙𝑓𝜙.

By using this identification and corollary 3, we know that 𝑇 ∗ 𝜙𝜖 ∈ 𝔇(ℝ𝑛) ⊂ 𝔈(ℝ𝑛)′ if
𝑇 ∈ 𝔈(ℝ𝑛)′. And if 𝑇 ∈ 𝔇(ℝ𝑛)′, then we only have 𝑇 ∗ 𝜙𝜖 ∈ 𝔈(ℝ𝑛) ⊂ 𝔇(ℝ𝑛)′. Before proving
this theorem, we shall prove some lemmas.

Lemma 1. For any 𝜓 ∈ 𝔇(ℝ𝑛) (or 𝔈(ℝ𝑛)), we have

lim
𝜖→0

(𝜓 ∗ 𝜙𝜖) = 𝜓

in 𝔇(ℝ𝑛) (or in 𝔈(ℝ𝑛)).

Proof. We first observe that

supp(𝜓 ∗ 𝜙𝜖) ⊂ supp(𝜓) + supp(𝜙𝜖) = supp(𝜓) + 􏾦𝐵(0; 𝜖),

where 􏾦𝐵(0; 𝜖) denotes the closed ball with center at 0 and radius 𝜖. From the definition of
functions convolution, we have

𝐷𝛼(𝜓 ∗ 𝜙𝜖) = (𝐷𝛼𝜓) ∗ 𝜙𝜖.

Hence we have to show that lim
𝜖→0

(𝜓 ∗ 𝜙𝜖)(𝑥) = 𝜓(𝑥) uniformly on any compact set. Note that

􏾙𝜙𝜖(𝑦)𝑑𝑦 = 1, therefore

(𝜓 ∗ 𝜙𝜖)(𝑥) − 𝜓(𝑥) = 􏾙
ℝ𝑛
􏿴𝜓(𝑥 − 𝑦) − 𝜓(𝑥)􏿷 ⋅ 𝜙𝜖(𝑦)𝑑𝑦.

Since 𝜙𝜖 is non-negative,􏾙
ℝ𝑛
𝜙𝜖(𝑦)𝑑𝑦 = 1 and the uniform continuity of 𝜓(𝑥) on any compact

set on 𝑥, we obtain the desired result.

We now could give the proof of Theorem 18.
Proof of Theorem 18. First note that

(𝑇 ∗ �̌�)(0) = 𝑇[𝑦](�̌�)(−𝑦)) = 𝑇[𝑦](𝜙(𝑦)) = 𝑇(𝜙). (20)
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Hence it suffices to show that

lim
𝜖→0

((𝑇 ∗ 𝜙𝜖) ∗ �̌�)(0) = (𝑇 ∗ �̌�)(0).

By proposition 13 and (20), we have

((𝑇 ∗ 𝜙𝜖) ∗ �̌�)(0) = (𝑇 ∗ (𝜙𝜖 ∗ �̌�))(0) = 𝑇 􏿴(𝜙𝜖 ∗ �̌�) �̌� .

The continuity of 𝑇 and Lemma 1 gives

lim
𝜖→0

𝑇 􏿴(𝜙𝜖 ∗ �̌�) �̌� = 𝑇((�̌�) )̌ = 𝑇(𝜓).

This completes the proof. □
The next theorem characterizes the operation of convolution.

Theorem 19 (L. Schwartz’ Theorem). Let 𝐿 be a continuous linear mapping on𝔇(ℝ𝑛) into 𝔈(ℝ𝑛)
such that

𝐿𝜏ℎ𝜙 = 𝜏ℎ𝐿𝜙 (21)
for any ℎ ∈ ℝ𝑛 and 𝜙 ∈ 𝔇(ℝ𝑛). Here 𝜏ℎ denotes the translation operator, where it is defined by
𝜏ℎ𝜙(𝑥) ∶= 𝜙(𝑥 − ℎ). Then there exists a unique 𝑇 ∈ 𝔇(ℝ𝑛)′ such that 𝐿 ∗ 𝜙 = 𝑇 ∗ 𝜙. Conversely, for
any 𝑇 ∈ 𝔇(ℝ𝑛)′ defines a continuous linear map 𝐿 on 𝔇(ℝ𝑛) into 𝔈(ℝ𝑛) by 𝐿𝜙 = 𝑇 ∗ 𝜙 such that 𝐿
satisfies (21).

Proof. Since 𝜙 ↦ �̌� is a continuous linear map of 𝔇(ℝ𝑛) onto itself, the linear map 𝑇 ∶ �̌� ↦
(𝐿𝜓)(0) defines a distribution 𝑇 ∈ 𝔇(ℝ𝑛)′. Then by (20), we have

(𝐿𝜙)(0) = 𝑇(�̌�) = (𝑇 ∗ 𝜙)(0).

Replacing 𝜙 be 𝜏ℎ𝜙 and make use of the condition (21), then we obtain

(𝐿𝜙)(−ℎ) = (𝜏ℎ𝐿𝜙)(0) = (𝐿𝜏ℎ𝜙)(0) = (𝑇 ∗ (𝜏ℎ𝜙))(0) = (𝑇 ∗ 𝜙)(−ℎ).

Thus 𝐿𝜙 = 𝑇 ∗ 𝜙. The converse part follows by

𝑇 ∗ (𝜏ℎ𝜙) = 𝑇[𝑦](𝜙(𝑥 − ℎ − 𝑦)) = 𝜏ℎ ⋅ 𝑇[𝑦](𝜙(𝑥 − 𝑦)) = 𝜏ℎ(𝑇 ∗ 𝜙).

Corollary. Let 𝑇1 ∈ 𝔇(ℝ𝑛)′ and 𝔈(ℝ𝑛)′. We consider the linear continuousmap 𝐿 from𝔇(ℝ𝑛)
to 𝔈(ℝ𝑛) defined by

𝐿 ∶ 𝜙 ↦ 𝑇1 ∗ (𝑇2 ∗ 𝜙).
Then Theorem 19 asserts that there is a unique distribution 𝑇 ∈ 𝔇(ℝ𝑛)′ such that 𝑇 ∗𝜙 = 𝐿(𝜙).
We then may define the convolution 𝑇1 ∗ 𝑇2 of 𝑇1 and 𝑇2 as the obtained 𝑇. In other words,
we may define

(𝑇1 ∗ 𝑇2) ∗ 𝜙 = 𝐿(𝜙) = 𝑇1 ∗ (𝑇2 ∗ 𝜙).

Proof. We shall show that the map 𝐿 defined by

𝐿 ∶ 𝜙 ↦ 𝑇1 ∗ (𝑇2 ∗ 𝜙)
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is from 𝔇(ℝ𝑛) to 𝔈(ℝ𝑛), and it is linear and continuous. since we require that 𝑇2 ∈ 𝔈(ℝ𝑛)′,
supp(𝑇2) is compact. Therefore, supp(𝑇2 ∗ 𝜙) is compact by proposition 11, that is, 𝑇2 ∗ 𝜙 ∈
𝔇(ℝ𝑛). It is clear that 𝑇1 ∗ (𝑇2 ∗ 𝜙) ∈ 𝔈(ℝ𝑛). To show the map is linear and continuous, we
consider the composition of two maps

𝜙 ↦ 𝑇2 ∗ 𝜙 ↦ 𝑇1 ∗ (𝑇2 ∗ 𝜙).

The first map is linear and continuous from𝔇(ℝ𝑛) to itself, and the second map is also linear
and continuous.

The next theorem shows that the convolution is actually commutative.

Theorem 20 (Commutativity of the convolution). Let 𝑇1 ∈ 𝔇(ℝ𝑛)′ and 𝑇2 ∈ 𝔼(ℝ𝑛)′. Then we
also can consider the continuous linear map

𝐿 ∶ 𝜙 ↦ 𝑇2 ∗ (𝑇1 ∗ 𝜙)

from 𝔇(ℝ𝑛) to 𝔈(ℝ𝑛). By Theorem 19, there is a distribution 𝑇 ∈ 𝔇(ℝ𝑛)′ such that 𝑇 ∗ 𝜙 = 𝐿(𝜙).
Then we define another convolution 𝑇2 ⧆ 𝑇1 to be the just obtained 𝑇.

Then, we have 𝑇1 ∗ 𝑇2 = 𝑇2 ⧆ 𝑇1.

Proof. The map 𝜙 ↦ 𝑇1 ∗ 𝜙 is linear and continuous on 𝔇(ℝ𝑛) into 𝔈(ℝ𝑛), which is again by
Proposition 11. Hence themap 𝜙 ↦ 𝑇2 ∗(𝑇1 ∗𝜙) is linear and continuous on𝔇(ℝ𝑛) into 𝔈(ℝ𝑛).
Thus, 𝑇2 ⧆ 𝑇1 is well-defined by Theorem 19. Next we shall show that 𝑇2 ⧆ 𝑇1 = 𝑇1 ∗ 𝑇2.

Let 𝜙1, 𝜙2 ∈ 𝔇(ℝ𝑛). Then we have,

(𝑇1 ∗ 𝑇2) ∗ (𝜙1 ∗ 𝜙2)
(𝑎)= 𝑇1 ∗ (𝑇2 ∗ (𝜙1 ∗ 𝜙2))

(𝑏)= 𝑇1 ∗ ((𝑇2 ∗ 𝜙1) ∗ 𝜙2)
(𝑐)= 𝑇1 ∗ (𝜙2 ∗ (𝑇2 ∗ 𝜙1))

(𝑑)= (𝑇1 ∗ 𝜙2) ∗ (𝑇2 ∗ 𝜙1).

We have used Proposition 13 on the equality (𝑏) and (𝑑), and the commutativity of the con-
volution of functions on (𝑐). It is worth noting that all computations are valid since 𝑇2 ∗ 𝜙1 ∈
𝔇(ℝ𝑛) by Corollary 3. Now we compute the expression (𝑇2 ⧆ 𝑇1) ∗ (𝜙1 ∗ 𝜙2),

(𝑇2 ⧆ 𝑇1) ∗ (𝜙1 ∗ 𝜙2)
(𝑒)= 𝑇2 ∗ (𝑇1 ∗ (𝜙2 ∗ 𝜙1))

(𝑓)= 𝑇2 ∗ ((𝑇1 ∗ 𝜙2) ∗ 𝜙1)
(𝑔)= 𝑇2 ∗ (𝜙1 ∗ (𝑇1 ∗ 𝜙2))

(ℎ)= (𝑇2 ∗ 𝜙1) ∗ (𝑇1 ∗ 𝜙2).

Now let 𝜙1 = 𝜓 ∈ 𝔇(ℝ𝑛) and let 𝜙2 = 𝜙𝜖 be an approximate identity (recall Definition 17).
Since both 𝑇1 ∗ 𝑇2 and 𝑇2 ⧆ 𝑇1 are belong to 𝔇(ℝ𝑛)′, we have

(𝑇1 ∗ 𝑇2) ∗ 𝜓 = lim
𝜖→0

(𝑇1 ∗ 𝑇2) ∗ (𝜓 ∗ 𝜙𝜖) = lim
𝜖→0

(𝑇2 ⧆ 𝑇1) ∗ (𝜓 ∗ 𝜙𝜖) = (𝑇2 ⧆ 𝑇1) ∗ 𝜓,

by applying Lemma 1. The theorem now follows from the “uniqueness” mentioned in The-
orem 19.

Remark. We shall use the symbol 𝑇2 ⧆ 𝑇1, since 𝑇1 ∗ 𝑇2 is only defined when 𝑇1 ∈ 𝔇(ℝ𝑛)′
and 𝑇2 ∈ 𝔈(ℝ𝑛)′. However, after proving Theorem 21, it is clear that we could write 𝑇2 ∗ 𝑇1
to denote 𝑇2 ⧆ 𝑇1, if either 𝑇1 or 𝑇2 is in 𝔈(ℝ𝑛)′

Corollary.
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1. Suppose both 𝑇1 and 𝑇2 belong to𝔇(ℝ𝑛)′ and at least one of them has compact support,
then

supp(𝑇1 ∗ 𝑇2) ⊂ supp(𝑇1) + supp(𝑇2).
In particular, if both 𝑇1 and 𝑇2 belong to 𝔈(ℝ𝑛)′, then so do 𝑇1 ∗ 𝑇2.

2. 𝑇1 ∗ (𝑇2 ∗ 𝑇3) = (𝑇1 ∗ 𝑇2) ∗ 𝑇3 if all 𝑇𝑗 except one have compact support.

3. 𝐷𝛼(𝑇1 ∗ 𝑇2) = (𝐷𝛼𝑇1) ∗ 𝑇2 = 𝑇1 ∗ (𝐷𝛼𝑇2).

Proof.

1. Suppose 𝜙 ∈ 𝔇(ℝ𝑛) are distribution such that

(𝑇1 ∗ 𝑇2)(𝜙) ≠ 0,

then by (20) we have

(𝑇1 ∗ 𝑇2)(𝜙) ≠ 0 ⟹ (𝑇1 ∗ (𝑇2 ∗ �̌�))(0) ≠ 0
⟹ 0 ∈ supp(𝑇1) + supp(𝑇2 ∗ �̌�)
⟹ 0 ∈ supp(𝑇1) + supp(𝑇2) − supp(𝜙)
⟹ supp(𝜙) ∩ (supp(𝑇1) + supp(𝑇2)) ≠ ∅

Thus for any supp(𝜙) ⊂ ℝ𝑛 ⧵ (supp(𝑇1)+supp(𝑇2)), we have (𝑇1 ∗𝑇2)(𝜙) = 0. Hence, any open
subset 𝜔 of (supp(𝑇1) + supp(𝑇2)) is an annihilation set of 𝑇1 ∗ 𝑇2, therefore we conclude that
supp(𝑇1 ∗ 𝑇2) ⊂ supp(𝑇1) + supp(𝑇2).

2. By (20), we have

(𝑇1 ∗ (𝑇2 ∗ 𝑇3))(𝜙) = ((𝑇1 ∗ (𝑇2 ∗ 𝑇3)) ∗ �̌�)(0)
= (𝑇1 ∗ ((𝑇2 ∗ 𝑇3) ∗ �̌�))(0)
= (𝑇1 ∗ (𝑇2 ∗ (𝑇3 ∗ �̌�)))(0)

and similarly,
((𝑇1 ∗ 𝑇2) ∗ 𝑇3)(𝜙) = (𝑇1 ∗ (𝑇2 ∗ (𝑇3 ∗ �̌�)))(0).

Note that we have used the fact that if both 𝑇1 and 𝑇2 belong to 𝔈(ℝ𝑛)′, then so do 𝑇1 ∗ 𝑇2.

3. To show the third assertion, we observe that, by proposition 11,

(𝐷𝛼𝑇𝛿) ∗ 𝜙 = 𝑇𝛿 ∗ (𝐷𝛼𝜙) = 𝐷𝛼(𝑇𝛿 ∗ 𝜙)
♡= 𝐷𝛼𝜙, (22)

where 𝑇𝛿(𝜙) ∶= 𝜙(0) is the evaluation functional at 0. Note that (♡) holds since

𝑇𝛿 ∗ 𝜙(𝑥) = 𝑇𝛿,[𝑦](𝜙(𝑥 − 𝑦)) = 𝜙(𝑥).

Now (22) implies that

(𝐷𝛼𝑇) ∗ 𝜙 = 𝑇 ∗ (𝐷𝛼𝜙) = 𝑇 ∗ ((𝐷𝛼𝑇𝛿) ∗ 𝜙) = (𝑇 ∗ 𝐷𝛼𝑇𝛿) ∗ 𝜙. (23)

Therefore, we obtain 𝐷𝛼𝑇 = (𝐷𝛼𝑇𝛿) ∗ 𝑇. Now by the commutativity (Theorem 20) and the
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associativity (Corollary 3 (2)), we obtain

𝐷𝛼(𝑇1 ∗ 𝑇2) = (𝐷𝛼𝑇𝛿) ∗ (𝑇1 ∗ 𝑇2) = ((𝐷𝛼𝑇𝛿) ∗ 𝑇1) ∗ 𝑇2 = (𝐷𝛼𝑇1) ∗ 𝑇2
= (𝐷𝛼𝑇𝛿) ∗ (𝑇2 ∗ 𝑇1) = ((𝐷𝛼𝑇𝛿) ∗ 𝑇2) ∗ 𝑇1 = (𝐷𝛼𝑇2) ∗ 𝑇1.

Discussions above proves the corollaries.

The Fourier transform and the convolution
Theorem 21. The Fourier transform of a compactly supported distribution 𝑇 ∈ 𝔈(ℝ𝑛)′ is given by
the equation:

􏾧𝑇(𝜉) ∶= lim
𝜖→0

(􏾩𝑇 ∗ 𝜙𝜖)(𝜉) = (2𝜋)−𝑛/2𝑇[𝑥](𝑒−𝑖⟨𝑥,𝜉⟩). (24)

Recall that 𝑇 ∗ 𝜙𝜖 is the regularization defined in Definition 17.

Proof. Recall Theorem 18, stating that any distribution 𝑇 ∈ 𝔇(ℝ𝑛)′, it can be approximate by
some smooth functions, that is

lim
𝜖→0

(𝑇 ∗ 𝜙𝜖) = 𝑇.

However, it is worth noting that this is true under the weak-∗ topology in 𝔈(ℝ𝑛)′. Since the
topology of 𝔖(ℝ𝑛)′ is stronger than 𝔈(ℝ𝑛)′, thus the limit is true in the weak-∗ topology of
𝔖(ℝ𝑛)′.

Therefore, by the continuity of the Fourier transform in the weak-∗ topology of 𝔖(ℝ𝑛)′,
we obtain

lim
𝜖→0

(􏾩𝑇 ∗ 𝜙𝜖) = 􏾧𝑇,

where the limit converge in the weak-∗ topology of 𝔖(ℝ𝑛)′. Now by definition,

(2𝜋)𝑛/2(􏾩𝑇 ∗ 𝜙𝜖)(𝜉) = 􏾙
ℝ𝑛
𝑒−𝑖⟨𝜉,𝑥⟩(𝑇 ∗ 𝜙𝜖)(𝑥)𝑑𝑥 = (𝑇 ∗ 𝜙𝜖)[𝑥] 􏿴𝑒−𝑖⟨𝜉,𝑥⟩􏿷 .

Here we have used the identification mentioned in Theorem 18, since (𝑇 ∗𝜙𝜖)(𝑥) ∈ 𝔇(ℝ𝑛) and
it can defined a linear continuous functional in 𝔈(ℝ𝑛)′. It follows from (20) that

(2𝜋)𝑛/2(􏾩𝑇 ∗ 𝜙𝜖)(𝜉) = (𝑇 ∗ 𝜙𝜖)[𝑥] 􏿴𝑒−𝑖⟨𝜉,𝑥⟩􏿷 = 􏿴(𝑇[𝑥] ∗ 𝜙𝜖) ∗ 𝑒𝑖⟨𝜉,𝑥⟩􏿷 (0)

= 􏿴𝑇[𝑥] ∗ (𝜙𝜖 ∗ 𝑒𝑖⟨𝜉,𝑥⟩)􏿷 (0) = 𝑇[𝑥] 􏿴􏾮𝜙𝜖 ∗ 𝑒−𝑖⟨𝜉,𝑥⟩􏿷 .

The last expression converge to 𝑇[𝑥] 􏿴𝑒−𝑖⟨𝜉,𝑥⟩􏿷 uniformly in 𝜉 on any bounded set of 𝜉 of the
complex 𝑛-space. This proves (24).

The next theorem is a generalization of the Schwartz’ Theorem (Theorem 19).

Theorem 22 (Schwartz’ Theorem on the Schwartz’ space). If we define the convolution of a
tempered distribution 𝑇 ∈ 𝔖(ℝ𝑛)′ and a rapidly decreasing function 𝜙 ∈ 𝔖(ℝ𝑛) by

(𝑇 ∗ 𝜙)(𝑥) = 𝑇[𝑦](𝜙(𝑥 − 𝑦)),

then the linear map 𝐿 on 𝔖(ℝ𝑛) into 𝔈(ℝ𝑛)

𝐿 ∶ 𝜙 ↦ 𝑇 ∗ 𝜙
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is characterized by the continuity and the translation invariance 𝜏ℎ𝐿𝜙 = 𝐿𝜏ℎ𝜙 for any 𝜙 ∈ 𝔖(ℝ𝑛).

The proof is omitted since it is very similar to the proof of Theorem 19. Now we shall
put more focus back to the Fourier transform of tempered distributions.

Recall that we have shown that for any 𝑓, 𝑔 ∈ 𝔖(ℝ𝑛), we have
􏾨𝑓 ∗ 𝑔 = (2𝜋)𝑛/2 􏾦𝑓 ⋅ 􏾦𝑔.

Similarly, we have the following

Theorem 23 (Convolution and the Fourier transform). If 𝑇 ∈ 𝔖(ℝ𝑛)′ and 𝜙 ∈ 𝔖(ℝ𝑛), then

(􏾩𝑇 ∗ 𝜙) = (2𝜋)𝑛/2􏾧𝜙 ⋅ 􏾧𝑇. (25)

If 𝑇 ∈ 𝔖(ℝ𝑛)′, and 𝑆 ∈ 𝔈(ℝ𝑛)′, then

(􏾩𝑇 ∗ 𝑆) = (2𝜋)𝑛/2 􏾦𝑆 ⋅ 􏾧𝑇. (26)

The second equation is reasonable since 􏾦𝑆 can be viewed as a smooth function by (24).

Proof. Let 𝜓 ∈ 𝔖(ℝ𝑛). Then the Fourier transform of 􏾧𝜙 ⋅ 𝜓 is equal to

(2𝜋)−𝑛/2􏾧􏾧𝜙 ∗ 􏾧𝜓 = (2𝜋)−𝑛/2�̌� ∗ 􏾧𝜓.

Thus,
(􏾩𝑇 ∗ 𝜙)(𝜓) = (𝑇 ∗ 𝜙)(􏾧𝜓) = ((𝑇 ∗ 𝜙) ∗ �̌�𝜓)(0) = (𝑇 ∗ (𝜙 ∗ �̌�𝜓))(0)

= 𝑇 􏿵(𝜙 ∗ �̌�𝜓 ) �̌� = 𝑇 􏿴�̌� ∗ 􏾧𝜓􏿷 = 𝑇 􏿴(2𝜋)𝑛/2(􏾧𝜙 ⋅ 𝜓) �̂�

= (2𝜋)𝑛/2􏾧𝑇 􏿴􏾧𝜙 ⋅ 𝜓􏿷 = (2𝜋)𝑛/2􏾧𝜙􏾧𝑇(𝜓).
Note that we have defined the multiplication of a function and a tempered distribution by
𝑔 ⋅ 𝑇(𝜓) ∶= 𝑇(𝑔𝜓) for a 𝑔 ∈ 𝔖(ℝ𝑛) and 𝑇 ∈ 𝔖(ℝ𝑛)′. Also we have applied the identity

(􏾰𝑓 ∗ 𝑔)(𝑥) = ( ̌𝑓 ∗ �̌�)(𝑥)

in our derivation, which could be easily be verified. It now remains to show the second
equation. Let 𝑆𝜖 be the regularization 𝑆 ∗ 𝜙𝜖. Then, by (25), the Fourier transform of 𝑇 ∗ 𝑆𝜖 is
equal to

(2𝜋)𝑛/2 ⋅ 􏾧𝑆𝜖 ⋅ 􏾧𝑇 = 􏿴(2𝜋)𝑛/2 ⋅ 􏾧𝜙𝜖 ⋅ 􏾦𝑆􏿷 ⋅ (2𝜋)𝑛/2 ⋅ 􏾧𝑇.
On the other hand, 𝑇 ∗ 𝑆𝜖 = (𝑇 ∗ 𝑆) ∗ 𝜙𝜖, therefore the Fourier transform of 𝑇 ∗ 𝑆𝜖 is also equal
to

(2𝜋)𝑛/2 ⋅ 􏾧𝜙𝜖 ⋅􏾩𝑇 ∗ 𝑆.
We conclude that

(2𝜋)𝑛/2 􏿴 􏾧𝜙𝜖 ⋅ 􏾦𝑆􏿷 ⋅ 􏾧𝑇 = 􏾧𝜙𝜖 ⋅􏾩𝑇 ∗ 𝑆.

Taking 𝜖 → 0 and using lim
𝜖→0

􏾧𝜙𝜖(𝑥) = 1 give us

(􏾩𝑇 ∗ 𝑆) = (2𝜋)𝑛/2 ⋅ 􏾦𝑆 ⋅ 􏾧𝑇.

This completes the proof.
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4 Appendix
In this part, I am going to deal with those important stuff which I actually do not want

to. For instance, I will introduce the inductive limit and the distribution space 𝔇(ℝ𝑛).

Definition 24 (inductive limit). Let 𝑋 be a vector space, and let {𝑋𝛼}𝛼∈Λ be a family of vector
subspaces of 𝑋 such that 􏾌

𝛼∈Λ
𝑋𝛼 = 𝑋. Suppose that each 𝑋𝛼 is a locally convex topological

vector space. The family {𝑋𝛼} satisfies the property that, if 𝑋𝛼 ⊂ 𝑋𝛽, then the an open subset
𝑈 ⊂ 𝑋𝛼 of 𝑋𝛼 is also open in the relative topology on 𝑋𝛽. In other words, the topology of
𝑋𝛽 restricted to 𝑋𝛼 is identical with 𝑋𝛼. For every convex balanced and absorbing set 𝑈, it
is defined to be open in 𝑋 if 𝑈 ∩ 𝑋𝛼 is an open subset of 𝑋𝛼. If 𝑋 is a locally convex linear
topological vector space whose topology is defined this way, then we call the inductive limit
of 𝑋𝛼.

We now can give the definition of 𝔇(ℝ𝑛).

Definition 25 (distributions). Let 𝐾 be a compact set in ℝ𝑛. Let 𝐶∞𝐾 (ℝ𝑛) ⊂ 𝐶∞0 (ℝ𝑛) be the set
of all compactly supported smooth function 𝜙 whose support supp(𝜙) is a subset of 𝐾. We
can define the topology on each 𝐶∞𝐾 through the semi-norms

􏿎𝑓􏿎𝐾,𝑚 = sup
|𝑠|≤𝑚; 𝑥∈𝐾

|𝐷𝑠𝑓(𝑥)| ,

then 𝔇𝐾(ℝ𝑛), the space 𝐶∞𝐾 (ℝ𝑛) with the topology defined by all the semi-norms ‖⋅‖𝐾,𝑚, is a
locally convex topological vector space.

We define 𝔇(ℝ𝑛) as the inductive limit of 𝔇𝐾(ℝ𝑛).

Remark. The convergence on 𝔇(ℝ𝑛) is stronger than uniform topology on 𝐶∞0 (ℝ𝑛), that is, if
lim
𝑛→∞

𝑓𝑛 = 𝑓 in 𝔇(ℝ𝑛) then 𝑓𝑛 ⇉ 𝑓.

Theorem 26. The convergence in 𝔇(ℝ𝑛) can be characterized by the following conditions:

1. There exists a compact set of ℝ𝑛 such that supp(𝑓𝑛) ⊂ 𝐾.

2. For any 𝑛-tuple 𝑠, 𝐷𝑠𝑓𝑛(𝑥) ⇉ 𝐷𝑠𝑓(𝑥) on 𝐾.

The proof is omitted here, however the result is quite useful. Next we are going to define
the 𝔈(ℝ𝑛).

Definition 27 (The 𝔈𝑘(ℝ𝑛) space). Let 𝐶𝑘(ℝ𝑛) be the space of all 𝑘-th continuously differen-
tiable functions. For any compact set 𝐾 ⊂ ℝ𝑛 and a non-negative integer 𝑚 ≤ 𝑘, we define
the semi-norm by

􏿎𝑓􏿎𝐾,𝑚 = sup
|𝑠|≤𝑚; 𝑥∈𝐾

|𝐷𝑠𝑓(𝑥)| .

Then the set 𝐶𝑘(ℝ𝑛) equipped with the topology defined by the semi-norms of the form is
denoted by 𝔈𝑘(ℝ𝑛). We simply write 𝔈(ℝ𝑛) to denote 𝔈∞(ℝ𝑛).
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Proposition 14. The convergence 𝑓𝑛 → 𝑓 in 𝔈𝑘(ℝ𝑛) is equivalent to the uniform convergence

lim
𝑛→∞

𝐷𝑠𝑓𝑛(𝑥) = 𝑓(𝑥)

in every compact set 𝐾 ⊂ ℝ𝑛.

Proposition 15. Note that the space of all compactly supported distributions can be 1-1 correspon-
dence to a continuously linear functional on 𝔈(ℝ𝑛), so we will write 𝔈(ℝ𝑛)′ for the set of all compactly
supported distributions.

Reading Reflection
In this report, we explored one of the sections in Yosida’s Functional Analysis [1]. How-

ever, I found this book to be a particularly challenging reference. The content is written in
a very concise manner, often leaving me unable to grasp the author’s intentions behind
certain proofs. As a result, I frequently discussed the parts I didn’t understand with my
teammates, and through these discussions, I gained a lot of valuable insights.

Beyond these difficulties, understanding unfamiliar sections required me to learn many
concepts beyond the scope of the text, such as inductive limits and the support of distri-
butions. This learning process was highly challenging but also expanded my knowledge
significantly. Through this report, I came to deeply appreciate that studying mathematics is
not always an easy journey. Sometimes, it requires us to confront difficulties and setbacks.
Nevertheless, through collaborative discussions withmy teammates and thorough study, we
were able to overcome these challenges and achieve a deeper understanding.

I believe this experience will have a positive impact on my future learning and research.
Despite the obstacles, I am determined to maintain my curiosity and passion for learning
while continuously improving my mathematical skills. Lastly, I would like to express my
gratitude to our instructor and my teammates for their support and assistance throughout
this process. Their encouragement and guidance enabled me to overcome challenges and
keepmoving forward. This experience has further emphasized the importance of teamwork,
and I am convinced that through collective effort, we can achieve even greater accomplish-
ments.
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